
Industrialization of IT:

An Information System Architecture for

Application System Landscape Providers

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik der

Otto-von-Guericke-Universität Magdeburg

von: Johannes Hintsch, M. Sc.

geboren am 24.12.1985 in Ellwangen an der Jagst

Gutachter:

Prof. Dr. Klaus Turowski

Prof. Dr. Gunter Saake

Prof. Dr. Rüdiger Zarnekow

Magdeburg, 2. Juli 2018

i

Abstract

Information technology (IT) service providers struggle with efficient and integrated production pro-

cesses when compared to modern manufacturers. Manufacturers produce products build-to-order

in a mass-customization approach or engineer-to-order in a highly customized but streamlined pro-

duction process while using computer-integrated manufacturing approaches. Software’s inherent

complexity and its heterogeneous implementations make such consistent management of applica-

tion service production difficult. This thesis examines if the IT service provider type of application

system landscape providers can implement a production process similarly efficient and integrated

as that of manufacturers. The thesis makes the argument that software for operations automation,

such as infrastructure as a service and configuration management software, can wrap application

software’s complexity and its’ heterogeneous implementations. Operations automation approaches

facilitate an automated, modularized, and standardized build- and -engineer-to-order production

process.

This thesis creates its artifact based on an analysis of current technology, a case study of

various IT service providers, including application system landscape providers, as well as literature.

It follows the design science paradigm of information systems research. The main contribution is

an information system architecture for application system landscape providers (ISAA). The ISAA

explores the limits of standardization, automation, and modularization for application system

landscape production. A domain model explicates the relationships between relevant entities of

application system landscape production on the layers of business, process, integration, software,

and infrastructure. Application system landscapes providers can describe the application system

landscapes that underlie the application services they provide to customers using three different

models: software, infrastructure, and orchestration configuration models. The ISAA’s leading

application system, the enterprise management system, treats these models as materials, which fa-

cilitates integration with secondary activities such as controlling. The thesis proposes a production

execution system that orchestrates the production of application services between the ASLP’s en-

terprise management (i.e., an ERP system), IT service management, and IT service production

systems (e.g., infrastructure as a service and configuration management systems), similarly to

manufacturing execution systems.

The evaluation follows a recognized methodology. It presents a prototypical implementation

of the ISAA after a discussion of the research’s relevance as well as the ISAA’s consistency, appli-

cability, and adaptability. Comprehensively conducted tests with the prototype show the ISAA’s

feasibility. Expert interviews validate the overall utility of the ISAA. Targeted companies can

improve their application service production in terms of quality and efficiency by leveraging this

novel automation- and model-based as well as integrated approach.

ii

iii

Abstract in German

IT-Dienstleister haben im Vergleich zu modernen Herstellern physischer Produkte mit der Umset-

zung effizienter und integrierter Produktionsprozesse zu kämpfen. Moderne Hersteller produzieren

physische Produkte, die im Rahmen eines Mass-Customization-Ansatzes (Build-to-order) oder in

einem hochgradig kundenspezifischen, aber dennoch schlanken, Produktionsprozess (Engineer-to-

order) unter Verwendung computerintegrierter Fertigungsverfahren produziert werden. Die inhärente

Komplexität von Software und ihre heterogenen Implementierungen erschweren ein solch konsis-

tentes Management bei der Produktion von Anwendungsdiensten. Diese Arbeit beschäftigt sich mit

Anbietern von Anwendungssystemlandschaften, eines speziellen IT-Dienstleistertyps. Diese Anbie-

ter sollen ihren Produktionsprozess ähnlich effizient und integriert gestalten können wie sie es

bei modernen Herstellern von physischen Produkten sind. Die vorliegende Arbeit argumentiert,

dass Software für die Betriebsautomatisierung, wie z. B. Infrastructure-as-a-Service- und Kon-

figurationsmanagementsoftware, die Komplexität der Anwendungssoftware und ihre heterogenen

Implementierungen kapseln kann. Ansätze zur Betriebsautomatisierung können einen automati-

sierten, modularisierten und standardisierten Produktionsprozess (Build- und Engineer-to-order)

ermöglichen.

Die Konstruktion des Artefakts der Arbeit basiert auf einer Analyse aktueller Technologien,

einer Fallstudie von verschiedenen IT-Dienstleistern, einschließlich Anbietern von Anwendungssys-

temlandschaften sowie einschlägiger Literatur. Die Arbeit folgt dem Design-Science Forschungs-

paradigma der Wirtschaftsinformatik. Der Hauptbeitrag ist eine Informationssystemarchitektur

für Anbieter von Anwendungssystemlandschaften (ISAA). Die ISAA untersucht die Grenzen von

Standardisierung, Automatisierung und Modularisierung für die Produktion von Anwendungssys-

temlandschaften. Ein Domänenmodell erklärt die Beziehungen zwischen den relevanten Entitäten

der Produktion von Anwendungssystemlandschaften auf den Ebenen Geschäft, Prozess, Integra-

tion, Software und Infrastruktur. Anbieter von Anwendungssystemlandschaften können die An-

wendungssystemlandschaften, die ihren Anwendungsdiensten zugrunde liegen, in drei verschiede-

nen Modellen beschreiben: in Software-, Infrastruktur- und Orchestrierungskonfigurationsmodel-

len. Das führende Anwendungssystem der ISAA, das Unternehmensmanagementsystem, behandelt

diese Modelle als Materialien, was die Integration mit sekundären Aktivitäten wie z. B. dem Con-

trolling erleichtert. Die vorliegende Arbeit schlägt ein Production-Execution-System vor, das die

Produktion von Anwendungsdiensten zwischen den Systemen zum Unternehmensmanagement (im

engeren Sinn ein ERP-System), zum IT-Service-Management und zur IT-Service-Produktion (z.

B. Infrastruktur als Service- und Konfigurationsmanagementsystem) orchestriert. Diese ähneln

Manufacturing-Execution-Systemen, die Hersteller zur Produktionssteuerung physischer Produkte

einsetzen.

Die Evaluierung der Arbeit erfolgt nach einer anerkannten Methodik. Nach einer Diskussion

über die Relevanz der Forschung und die Konsistenz, Anwendbarkeit und Anpassungsfähigkeit der

ISAA wird eine prototypische Implementierung der ISAA vorgestellt. Umfangreich durchgeführte

Tests mit dem Prototyp zeigen die Umsetzbarkeit der ISAA. Experteninterviews bestätigen die

Nützlichkeit der ISAA. Durch die Nutzung dieses neuartigen automatisierungs- und modellba-

sierten sowie integrierten Ansatzes können betreffende Unternehmen ihre Produktion von Anwen-

dungsdiensten bezüglich Qualität und Effizienz verbessern.

iv

v

Contents

Abstract i

Abstract in German iii

List of Figures ix

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . 1

1.2 Hypotheses, research goal, and research questions 3

1.3 Publications of the author . 5

1.4 Thesis structure . 6

2 Research design 7
2.1 Case study design . 8

2.2 Literature review design . 10

2.3 Summary . 11

3 Research background 13
3.1 IT service provisioning . 14

3.1.1 IT service definitions and IT service provider types 14

3.1.2 Success factors of IT outsourcing . 16

3.1.3 IT service management frameworks and recent developments 17

3.1.4 Industrialization of IT and cloud computing 20

3.2 Enterprise management systems . 22

3.2.1 Definition of enterprise systems research 23

3.2.2 Factors of adopting enterprise management systems and information

system reference models . 24

3.2.3 Enterprise management systems of IT service providers 25

3.2.4 Service system meta-models . 27

3.2.5 Industrial methods for IT service production 28

3.3 The development towards DevOps and microservices 29

3.3.1 Software engineering process models 29

3.3.2 System architectures . 33

vi

3.4 Operation of application system landscapes 38

3.4.1 Configuration management software 38

3.4.2 Orchestration software . 41

3.5 Summary and research gap . 43

3.5.1 Summary . 43

3.5.2 Research gap . 45

4 Preliminary investigations 49
4.1 Application system landscapes of IT service providers 49

4.2 Requirements of the architecture . 54

4.2.1 Architecture relevance . 54

4.2.2 Complete service description . 56

4.2.3 Application service specificities . 57

4.2.4 Production manageability . 58

4.2.5 Requirements overview . 59

4.3 Selection of an operations automation approach 59

5 The information system architecture for ASLPs (ISAA) 65
5.1 Domain model . 67

5.1.1 Business domain . 68

5.1.2 Operations automation . 71

5.1.3 Application systems . 74

5.1.4 Mapping of domain entities to ERP master data 75

5.2 Application service production . 81

5.2.1 Inquiry and order processing . 84

5.2.2 Engineering . 86

5.2.3 Deployment and billing . 89

5.2.4 Operation . 90

5.2.5 Termination . 93

5.3 Application system landscape . 93

5.4 Production execution system . 97

5.4.1 System activity: Service deployment 97

5.4.2 System activity: Service change . 99

5.4.3 System activity: Service billing . 99

5.4.4 System activity: Service termination 101

5.4.5 Data model . 101

6 Evaluation 103
6.1 Evaluation of relevance (EVAL 1) . 106

6.2 Validation of consistent architecture decisions (EVAL 2) 107

6.3 Exemplary application services for the evaluation (scenarios) 111

vii

6.4 Validation of applicability and adaptability of architecture (EVAL 2) 112

6.4.1 Model-based application services . 113

6.4.2 Container-based virtualization . 116

6.4.3 Multi-tenant application services . 117

6.4.4 Summary . 118

6.5 Evaluation based on prototype (EVAL 3) 118

6.5.1 Prototype . 118

6.5.1.1 IT system landscape . 118

6.5.1.2 Production execution system 121

6.5.1.3 Exemplary application services 121

6.5.1.4 Computer aided configuration model generation 123

6.5.2 The production process in different variations and phases 124

6.5.2.1 Full build-to-order . 124

6.5.2.2 Full engineer-to-order . 126

6.5.2.3 Different changes in operation 128

6.5.2.4 Extending contract before termination 129

6.5.3 Feasibility of automation . 129

6.5.3.1 Deployment times . 131

6.5.3.2 Comparison . 134

6.5.4 Mapping of prototype’s entities to ISAA’s entities 136

6.6 Evaluation based on expert interviews (EVAL 3) 139

6.6.1 Interview design . 139

6.6.2 Results . 140

6.7 Discussion . 142

7 Conclusion 149
7.1 Summary . 149

7.2 Contribution . 152

7.3 Future work . 153

A Domain model of the ISAA 155

B Supplementary material for case study 157
B.1 Overview of cases . 157

B.2 Question catalogue . 160

C Supplementary material for EVAL3 163
C.1 Different variations and phases of the production process 163

C.2 Manual deployments . 167

C.3 Automated deployments . 173

C.4 Presentation for expert interviews . 176

C.5 Questions for expert interviews . 180

viii

C.6 Transcripts of expert interviews . 181

C.6.1 Interview 1 . 181

C.6.2 Interview 2 . 187

C.6.3 Interview 3 . 192

Bibliography 199

ix

List of Figures

2.1 Research framework of this research project, based on Hevner et al. (2004). 7

2.2 Literature reviews conducted in this research project. 11

3.1 IT stack in different service models, based on Stallings (2017). 21

3.2 Example of a product-specific continuous deployment pipeline for DevOps

(Ebert et al., 2016). 32

3.3 Managing the configuration of software on different devices (Delaet et al.,

2010). 39

3.4 Morphological box that highlights the research gap addressed in this thesis. 46

4.1 Comparison of IT service providers’ application system landscapes (based

on which application systems are mission-critical). 51

4.2 Functionality convergence of application software packages. 52

4.3 Operations automation approaches focus on different layers of the IT stack. 61

5.1 Value system and its sub-concepts, based on Weske (2012, pp. 73–83). . . . 65

5.2 Example of an ASLP’s value system and subordinate concepts. 66

5.3 Architecture description aligned with standard architecture layers. 67

5.4 ASLP’s business relationship with customers. 68

5.5 Core components of an application service in the ISAA. 69

5.6 Model-based configuration management on the different layers of the IT stack. 70

5.7 Configuration of the software layer. 71

5.8 Configuration of the infrastructure layer. 73

5.9 Version control system. 73

5.10 Application systems that are central to ASL production and their typically

network-based connections (control associations). 76

5.11 ERP master data entity types and their relationships. 76

5.12 Master data mapping (not all associations between standard master data

types are shown). 77

5.13 Example of different materials making up the IT product fast content ma-

nagement system. 78

5.14 Development of the overall production process based on three relevant pro-

cess frameworks. 82

5.15 Application service production process. 83

5.16 Inquiry and order processing process. 85

5.17 Engineering process. 86

x

5.18 An architecture description for the fast content management system as a

UML deployment diagram. 87

5.19 Deployment and billing process. 89

5.20 Operation phase. 91

5.21 Change of software and configuration models. 92

5.22 Contract handling before the termination date. 93

5.23 Application system categories in ASLP’s landscapes. 94

5.24 Application system landscape depicted in a UML component diagram. . . . 96

5.25 PES’s system activity service deployment. 98

5.26 Configuration of software on each instance. 99

5.27 PES’s system activity service change. 100

5.28 PES’s system activity service billing (fixed). 100

5.29 PES’s system activity service billing (based on usage). 100

5.30 Service termination. 101

5.31 Model of the data handled by the PES. 102

6.1 Business entities of an exemplary CMS service. 113

6.2 Defining models of the content management service. 114

6.3 State induced with software configuration models (extract). 115

6.4 State induced with infrastructure configuration models (extract). 115

6.5 Container-based application service. 116

6.6 Multi-tenant application service. 117

6.7 Application system landscape of the prototype in a UML deployment diagram.119

6.8 Thread starting billing activities. 121

6.9 Application system landscape modeller. 124

6.10 Materials in the contract for remote desktop service. 126

6.11 Application service showing entities on different abstraction levels. 127

6.12 Modelling the new orchestration configuration model. 128

6.13 Memory utilization of the PES during deployment (for t = 1, ..., 40). 133

6.14 CPU utilization of the PES during deployment (for t = 1, ..., 40). 133

6.15 Manual deployment of SAP ERP compared to automated deployment. . . . 134

6.16 Manual deployment of the remote desktop compared to automated deploy-

ment (external development time added). 135

6.17 Manual deployment of the remote desktop compared to automated deploy-

ment. 135

6.18 Costs per deployment decrease when the number of deployments increases. 136

7.1 Parts of the information system architecture that are in this thesis’ focus. . 153

A.1 The version control system in its relationship with the systems for ITSP

and systems engineering. 155

xi

A.2 View of domain model that shows entities of all layers as well as some of their

relationships (in order to retain readability, not all entities or relationships

could be included). 156

C.1 Slide deck of presentation to inform experts (Slides 0 - 5). 176

C.2 Slide deck of presentation to inform experts (Slides 6 - 11). 177

C.3 Slide deck of presentation to inform experts (Slides 12 - 17). 178

C.4 Slide deck of presentation to inform experts (Slides 18 - 21). 179

xii

xiii

List of Tables

4.1 Overview of illustrative case sample with descriptions about the business model. . 55

4.2 Requirements for designing the ASLP information system architecture. . . . 60

5.1 Software configuration on different layers using Saltstack, Puppet, and An-

sible. 72

5.2 Examples of master data types for application system landscape production

in contrast with physical goods production. 79

6.1 Four steps of DSR evaluation, adapted from Sonnenberg and vom Brocke

(2012). 104

6.2 Steps for evaluating the ISAA. 105

6.3 Parts of the ISAA that are affected by the architecture decisions. 107

6.4 Architecture decisions. 109

6.5 Rationales for architecture decisions (ADs are represented by ID). 110

6.6 The three application services used throughout the evaluation. 111

6.7 Technical implementation of the application services. 122

6.8 Process steps for deploying a BTO service. 125

6.9 Multiple deployments of a service in a manual and automated fashion. . . . 131

6.10 Manual deployment times for the three services. 132

6.11 Automated deployment times for different configurations. 132

6.12 Mapping of elements of the application system landscape of the prototype

to the elements of the ISAA (ADE). 137

6.13 Mapping of prototype elements to the elements of the ISAA (ADE). 138

6.14 Overview of experts, sorted by their interview ID. 139

B.1 Quantitative overview of the cases and collected data. 157

B.2 Full case overview. 158

B.3 Mapping of cases with previous publications. 159

C.1 Changing a service parameter in the operation phase. 163

C.2 Process steps for deploying an ETO service with a new software configura-

tion model. 164

C.3 Changing a software configuration model for a customer in the operation

phase. 165

C.4 Fixing a bug. 166

C.5 Extending the contract of a service. 166

C.6 Manual deployment of the remote desktop service (1/4). 167

xiv

C.7 Manual deployment of the remote desktop service (2/4). 168

C.8 Manual deployment of the remote desktop service (3/4). 169

C.9 Manual deployment of the remote desktop service (4/4). 170

C.10 Manual deployment of the SAP ERP service. 171

C.11 Manual deployment of the CMS (with MySQL). 172

C.12 Structure of the remote desktop service and LOC for each model. 173

C.13 Structure of the SAP ERP service and LOC for each model. 174

C.14 Structure of the CMS (with MySQL) and LOC for each model. 174

C.15 Automated deployment of the remote desktop service with three small clients.174

C.16 Automated deployment of SAP ERP with three small clients. 175

C.17 Automated deployment of CMS (with MySQL). 175

xv

List of Abbreviations

AD Architecture decision

ADE Architecture description element

API Application programming interface

ASL Application system landscape

ASLP Application system landscape provider

ASP Application service provider

BOM Bill of materials

BTO Build-to-order

CAMS Culture, automation, measurement, and sharing

CI Configuration item

CMDB Configuration management database

CMS Content management system

COBIT Control objectives for information and related technology

CPU Central processing unit

CRM Customer relationship management

DSL Domain-specific language

DSR Design science research

ERP Enterprise resource planning

ETO Engineer-to-order

EVAL Evaluation step

GB Gigabyte

GBI Global bike, inc.

HTTP Hypertext transfer protocol

IaaS Infrastructure as a service

xvi

ID Identifier

IDE Integrated development environment

IEC International electrotechnical commission

IP Internet protocol

ISAA Information system architecture for ASLPs

ISO International organization for standardization

IT Information technology

ITIL IT infrastructure library

ITSM IT service management

ITSP IT service production

JSON Javascript object notation

KPI Key performance indicator

LAMP Linux OS, Apache HTTP server, MySQL, and PHP

LOC Lines of code

LTS Long time support

OAA Operations automation approach

OS Operating system

PaaS Platform as a service

PES Production execution system

PHP PHP: Hypertext preprocessor

PPC Production planning and control

REQ Requirement

REST Representational state transfer

RQ Research question

SaaS Software as a service

SCM Supply chain management

SCOR Supply chain operations reference model

xvii

SCSI Small computer system interface

SE Software engineering

SLA Service level agreement

SLES SUSE linux enterprise server

SOA Service oriented architecture

SQL Structured query language

SRE Site reliability engineering

TB Terabyte

TOSCA Topology and orchestration specification for cloud applications

UML Unified modelling language

URL Uniform resource locator

VM Virtual machine

XML Extensible markup language

xviii

Johannes Hintsch, M. Sc. 1

1 Introduction

This chapter starts out with motivating the research project of this thesis. Based on the

shortly outlined research gap, the research goal, hypotheses, and research questions are

established. Furthermore, previous publications of the author are shortly presented as

they share content with this thesis. The thesis outline is presented in the last section.

1.1 Motivation

Managing information technology (IT) and manufacturing enterprises differ significantly.

Manufacturers can leverage a knowledge base (Hevner et al., 2004) which has had a dis-

tinctly longer time to mature. A production theory (Gutenberg, 1983) is part of the

manufacturing knowledge base. It developed due to various reasons. One indeed is that

the human senses can experience the raw materials and semi-finished goods which are ma-

nufactured into a product. The tangible characteristics of a physical entity, such as wood

or a rubber tire, are sufficiently comparable based on their common perception (Dargahi

and Najarian, 2004). In other words, the population as a whole share a standard concept

of physical entities.

A standard concept in IT, describing what the raw materials, the semi-finished goods,

or even the products (finished goods) are, is not self-evident. This is because software has

no physical form except bit encodings on a carrier medium and the user interface displayed

on a screen. Furthermore, creation of pervasive open standards has been aggravated by

companies’ reluctance to share their proprietary knowledge. One reason is the fear of

losing a competitive advantage (Garud and Kumaraswamy, 1993).

IT as an industry has matured nonetheless. Big players in the marketplace have

embraced open source and open standards as part of their strategies (Akkermans and

Van der Horst, 2002; Fitzgerald, 2006; Andersen-Gott et al., 2012). This embrace has

led to platforms which are comparable to standardized semi-finished goods, such as the

Java Development Kit (Egyedi, 2001). Further examples include internet communication

protocols (Cusumano, 2010) or the trinity of Hypertext Markup Language, Cascading Style

Sheets, and JavaScript, nowadays widely used in web application software development

(Charland and Leroux, 2011). Standardization is not limited to the technology layer.

From a business perspective, companies’ IT is increasingly standardized and servitized by

transforming it “[...] from silo business functions to cross-functional organization and from

product to service orientation” (Conger, 2010). Subsystems of organizations’ information

systems, socio-technical systems comprising human and machine components (WKWI,

2 An Information System Architecture for ASLPs

1994), are the subject of such transformations.

Various frameworks and standards discuss the different aspects of servitization of

organizations’ information systems. Examples include the common practice framework

Control Objectives for Information and related Technologies (COBIT) (Lainhart et al.,

2012), the service management system standard ISO1/IEC2 20000 (ISO/IEC, 2011), or

the recently published IT4IT reference architecture (The Open Group, 2017). Amongst

them, the IT infrastructure library (ITIL) stands out. Some call it a de-facto standard (Wu

et al., 2011) and it has significant adoption rates which, however, differ among geographical

regions and company types (Marrone et al., 2014; Yazici et al., 2015).

Seeking to increase the efficiency of IT service provisioning further, researchers (Zar-

nekow et al., 2006; Beimborn et al., 2012; Erbes et al., 2012) and practitioners (Bell and

Orzen, 2010; Betz, 2011; Kim et al., 2013) have studied the industrialization of other indus-

tries. In this regard, manufacturing has been of particular interest. This adoption research

stream has been termed industrialization of IT (Hochstein et al., 2007). Four principles

commonly describe it: standardization and automation, modularization, continuous im-

provement, and concentration on core competencies (sourcing) (Hochstein et al., 2007).

In spite of these principles having general validity for IT services, further differentiation

is required. In particular, IT services may be equipment based or industrial in contrast to

people based or personal (Thomas, 1978; Becker et al., 2011; Zarnekow, 2007). Although

the principles can be applied to personal IT service provisioning, they are particularly

relevant for industrial service provisioning (Zarnekow, 2007, p. 6).

In the later stages of industrialization, IT-tool support became a necessity for manu-

facturers (Klaus et al., 2000). The concentration on core competencies (Prahalad et al.,

1990), fulfillment of regulatory requirements (Liang et al., 2004), and the need for effi-

ciency are factors that required increased integration of companies’ processes and resour-

ces (Grant, 1996). Material requirements planning systems were first used to calculate the

required materials for a varying order volume, and later evolved into enterprise resource

planning (ERP) systems (Klaus et al., 2000). However, ERP systems are not the only IT

tools used by manufacturers. A variety of tools for computer-integrated manufacturing

such as computer-aided design and manufacturing execution systems (Scheer, 1997, p.

93; Romero and Vernadat, 2016) are used in today’s application system landscapes for

product lifecycle management (Frechette, 2011). Harrison and van Hoek (2008, p. 152)

reports how physical products may be fully engineered and fabricated after a customer

order has been received just-in-time (engineer-to-order), using such application system

landscapes. For IT, aiming at higher efficiency, the vision of a comprehensive ERP system

to manage IT service providers’ resources has repeatedly been expressed (Hofmann, 2009;

Lloyd, 2011, p. 145; Richter and Schaaf, 2011; Betz, 2011, p. xxvi; Glohr et al., 2014).

Despite this, resource tracking seems more natural for manufacturing than for IT service

providers because manufacturing is inherently parts-based.

Some visions for ERP have been published, and usage of ERP systems by IT com-

1International Organization for Standardization (ISO)
2International Electrotechnical Commission (IEC)

Johannes Hintsch, M. Sc. 3

panies has been documented (Botta-Genoulaz and Millet, 2006). Betz (2011) and ITIL

(Lloyd, 2011) take a broad perspective when presenting their visions of ERP for IT. Even

though they focus on industrial IT service provisioning, the organizations of their readers

may not be very similar. For instance, an internal IT service provider might manage

desktop workplaces for its branch employees. Its requirements may be very different com-

pared to a company which offers a web-based customer relationship management (CRM)

service. On the one hand, the internal service provider might require functionality to

instruct, schedule, support, and control field technicians as well as to procure and track

hardware. On the other hand, the CRM provider may have invested in subscription-based

billing functionality as well as the integration of its CRM and ticket management systems

to facilitate a fast and profitability-aware addressment of feature requests (Botta-Genoulaz

and Millet, 2006; Hintsch et al., 2015c).

1.2 Hypotheses, research goal, and research questions

Considering extant literature, a standard ERP software for all of IT is still a vision.

Therefore, in this thesis, the scope is narrowed to a specific type of IT service provider. It

is exemplified that the ERP concept can comprehensively be implemented to achieve utility

for IT service providers. A specific type of IT service provider is chosen to accomplish this:

companies which offer application services to their customers. They will be referred to

as application system landscape providers (ASLP). The more general application service

providers (ASP) are usually referred to as companies offering customization services for

their hosted standard software packages over a wide area network (Susarla et al., 2003).

A dominant product design characterizes mature industries, such as the automobile

industry (Kastensson, 2014). Certain standards, or dominant designs, also exist on diffe-

rent layers of the IT stack. For instance, infrastructure as a service (IaaS) offerings are

highly standardized. Analysts predict that by 2019 90% of IaaS providers will have been

driven out of the market by the two dominating players Amazon and Microsoft (Gartner,

2017c). IaaS can be considered to have a dominant product design. IaaS offerings are

often standardized regarding payment models and product features such as the processor

architecture (Prodan and Ostermann, 2009). However, such a dominant design on higher

layers of the IT stack is not discernible due to complex and heterogeneous technology

stacks (Eilam et al., 2006; Färber et al., 2011).

Therefore, focusing on infrastructure provisioning appears to be less relevant as a

research topic regarding ERP for IT. As there will increasingly be a smaller number of

large providers, such research would only address a small audience. On the other hand,

companies that provide application services are likely to grow in numbers as customers’

application requirements will remain diverse (Riemer and Ahlemann, 2001; Currie and

Seltsikas, 2001; Anderson et al., 2013). Application services can be offered in different

ways. On one extreme, it can involve a substantial software development effort. In other

cases, typical ASP cases, consulting and customization services may be offered in addition

to the managed service offerings. ASLPs focus on the production of application system

4 An Information System Architecture for ASLPs

landscapes. In this sense, they are on the opposite spectrum of companies providing highly

customized software to their customers. They provide landscapes of different application

systems. Managing the production of heterogeneous application system landscapes is not

trivial (Eilam et al., 2006). However, ASLPs are selected because their products are less

standardized than utility computing services such as IaaS. They do not focus on very

individual customer requirements. Other than traditional ASPs, their focus lies on the

design, deployment, and operation of complex application system landscapes (ASL) for

their customers.

Two hypotheses are addressed within this thesis.

Hypothesis 1

A dominant parts-based product design can be established for ASLPs. These designs

are based on software for different operations automation approaches (OAA) (Wet-

tinger et al., 2016), such as configuration management software (Delaet et al., 2010),

container-based virtualization software (Bernstein, 2014b), infrastructure as a service

(IaaS) software (Mell and Grance, 2011), and orchestration software (Chang et al.,

2006).

OAAs can be used to wrap software’s inherent complexity and its heterogeneous

implementations (Hintsch et al., 2015a). The second hypothesis addresses the endeavor

to adopt the efficiencies that can be observed in modern manufacturing companies.

Hypothesis 2

ASLPs can produce their application services based on models and components, as

well as automatically, much like physical products of modern manufactures.

H2 may be constrained. ASLPs that employ OAAs will more easily be able to offer

a set of standardized and mass-customizable ASLs of relatively low complexity. Highly

customized, complex landscapes that are integrated into the grown, heterogeneous infor-

mation systems of multi-national corporations may be difficult to fit into a production pro-

cess that is also used for mass-customized solutions. However, in ASLPs’ business, there

are no clear-cut borders as the similarity to traditional ASPs exhibits. Hence, both build-

to-order (BTO) and engineer-to-order (ETO) scenarios need to be supported (Stevenson

et al., 2005; Ahmad et al., 2010). A standardized, mass-customizable (build-to-order),

and small ASL might evolve into a highly customized, complex, and large ASL. Similarly,

new customers will ask for ASLs. Their specific business requirements can lead to a BTO

or ETO scenario. If the customer’s requirements can be satisfied in a mass-customized

approach, the BTO scenario or otherwise the ETO scenario is applicable.

Johannes Hintsch, M. Sc. 5

Research goal

The research goal of this thesis is to increase the efficiency of ASLPs’ application ser-

vice production through standardization, automation, and modularization by creating

an information system architecture for ASLPs (ISAA).

The ISAA is used to test and validate the Hypotheses 1 and 2. Furthermore, it

can be used by companies to adapt their information system by the provisions of the

ISAA. The term production, in this thesis, is understood in a broad sense as a value-

creating process. It is not narrowly restricted to mean only the fabrication process in

manufacturing. Application systems are application software and data (Stahlknecht and

Hasenkamp, 2005, p. 226). Within implementations of the ISAA, they should be based on

standard application software to avoid development of new software as much as possible.

The ISAA should be constructed in a way that fits in with practical realities. The-

refore, three preliminary research questions need to be answered. IT service providers

already have application systems in place to support their IT service production. Conse-

quently, to construct an information system architecture that is supported by an applica-

tion system landscape the following research question (RQ) needs to be answered.

Research question 1

What do application system landscapes of IT service providers look like today?

The requirements of ASLPs have to be addressed if the ISAA shall be of utility to

them. Consequently, the following research question has to be answered.

Research question 2

What are the requirements that application system landscape providers have regarding

an information system architecture that supports their application service production

process?

Several different approaches for automating operations exist (Wettinger et al., 2016).

Therefore, the following research question is addressed.

Research question 3

What operations automation approach is suitable for constructing the information

system architecture?

This thesis finalizes the research of a five-year research project, in which several

publications were created and released to the community. The next section briefly presents

these publications and places them into the content structure of the thesis.

1.3 Publications of the author

The first structured literature review was performed to identify research on ERP for the IT

service industry (Hintsch, 2013). A second reviewed formalizations of IT service manage-

ment frameworks. ITSM frameworks often only exist in prose form with different degrees

6 An Information System Architecture for ASLPs

of structuredness which can hinder their systematic and versatile application (Hintsch and

Turowski, 2013). The literature on configuration management software was reviewed in

a third paper (Hintsch et al., 2016a). Configuration management software is one techno-

logy to approach operations automation. The review results are used in the research

background chapter 3.

An interview-based multi case study was performed to address RQ1 and RQ2. It

inspected the current state of application system landscapes of IT service providers. The

content from two papers that present the study’s results, as well as results that were not

published before, are used in the thesis (cf. sections 4.2 and B). It is reported on how

IT service providers support their value creation processes with ERP systems (Hintsch

et al., 2015b) and what systems their application system landscapes are comprised of

(Hintsch et al., 2016b). A taxonomy of application systems was developed. The employed

case study methodology is discussed in sections 2.1 and 4.1. The case study results are

presented in section 4.1. The taxonomy of application systems was refined by Hintsch

et al. (2017) and is used in section 5.3.

The ISAA was iteratively constructed. The first publication on the architecture (Hint-

sch et al., 2015c) presented an initial version of a core model, the domain model. That

publication focused on a BTO scenario and the deployment step. The early version of the

prototype used in that paper and the architecture itself were gradually extended. The se-

cond publication on the architecture presents an extract of the version of the architecture

that is also presented in this thesis (Hintsch et al., 2018). It includes the differentiation of

ETO and BTO but is extended here by a full discussion of the domain model, the process

model, and the application system landscape. Furthermore, the evaluation was extended

and is presented in more detail.

1.4 Thesis structure

The thesis is structured as follows. Chapter 2 describes the research design. It is aligned

with the design science paradigm of information systems research (Hevner et al., 2004;

Peffers et al., 2008). Chapter 3 discusses the research background, including related work.

It begins with a detailed overview of all of its’ sections, setting the works presented in

the research background chapter in context to this thesis. Chapter 4 addresses the three

research questions. First, application system landscapes of IT service providers are stu-

died. Secondly, the requirements of the architecture are derived from three cases. And

last, an OAA is selected for constructing the ISAA. These preliminary investigations lay

the groundwork for the ISAA. The ISAA’s architecture description in chapter 5 includes

a domain model, a process model for application service production, a model of the ap-

plication system landscape that supports the information system, and specific models for

the central production execution system. Chapter 6 presents the evaluation. This chapter

also includes the discussion of the thesis’ results, including its limitations. A conclusion

is drawn in chapter 7. This chapter includes a summary of the thesis, a discussion of the

contribution, and finally, possible directions of future work.

Johannes Hintsch, M. Sc. 7

2 Research design

Research on information systems is classified into two paradigms: behavioral and design

science. Both paradigms aim at improving the efficiency and effectiveness of organizations’

information systems and their usage. Under the behavioral science paradigm, scientists

build theories using empirical or qualitative data. Such theories may explain phenomena

regarding information systems in organizations, provide insights to organizations’ exe-

cutives, and guide their decision-making process. In contrast, design scientists engineer

artifacts to improve the efficiency and effectiveness of organizations’ information systems.

(Hevner et al., 2004)

This research project employs the design science paradigm. The information system

architecture (ISAA) is its artifact. Two scholar groups who discuss design science are

frequently1 cited in the literature: Hevner et al. (2004) and Peffers et al. (2008). Hevner

et al. (2004) provide a general framework describing what the essential elements of design

science research (DSR) projects are. Researchers are advised in conducting sound DSR

as well as in communicating research to their audience. Peffers et al. (2008) propose a

process that guides through the necessary activities of DSR. Both articles are used as a

basis for this thesis’ research design. Figure 2.1 shows the DSR framework by Hevner

et al. (2004), instantiated for this research project.

Foundations

Methodolgies

People

Organizations

Technology

Environment Knowledge baseThis research project

structured

literature

reviews

un-

structured

literature

reviews

case

study

expert

interviews

Additions to the

knowledge base

Novel insights

for the environment

Evaluate

Develop

technology

analysis

Figure 2.1: Research framework of this research project, based on Hevner et al. (2004).

The project started with a general topic description and then entered a continuous

1Hevner et al. (2004) are reported to have 9455 citations (https://goo.gl/cvvmfP) and Peffers et al.
(2008) are reported to have 2646 (https://goo.gl/KRT6Y1). Citation numbers were recorded on Au-
gust 13, 2017.

https://goo.gl/cvvmfP
https://goo.gl/KRT6Y1

8 An Information System Architecture for ASLPs

loop of concept development and evaluation. The loop started with setting the research

scope and justifying it. It continued with building the information system architecture

and its evaluation. Moreover, finally, the thesis at hand documents the results of the

research project. The arrows in Figure 2.1, leading from environment and knowledge

base to the central rectangle, represent the input for the research project. The research

was conducted to provide novel insights into the environment, particularly to IT service

providers. The results are added to the knowledge base in the form of this thesis and

preceding publications.

The artifact in this thesis is the information system architecture. ISO/IEC/IEEE

(2011, p. 2) define a system architecture to be “[...] fundamental concepts or properties of

a system in its environment embodied in its elements, relationships, and in the principles

of its design and evolution.” The information system architecture that is proposed needs

to be applicable to real-world situations. Therefore, any architecture decision needs to

be justified by some rationale. A vital rationale, for example, is that concerns of relevant

stakeholders are addressed. Consequently, an architecture decision pertains to one or more

concerns of relevant stakeholders. Some decisions, of course, may raise new concerns, and

not all decisions can practically be recorded (ISO/IEC/IEEE, 2011, p. 15).

To derive concerns from potential stakeholders for the information system architecture

for ASLPs, a case study amongst IT service providers was conducted. The case study’s

design will be described in more detail in section 2.1.

An analysis of relevant technologies is required because the ISAA makes prescriptions

as to how technologies should be employed. Their analysis was performed by studying

selected technology products. Also, information on these technologies was derived from

literature. Foundations and methodologies (e.g., for case study or structure literature

review) were derived from the knowledge base as well. This deduction was made by

reviews of the extant literature. The design of the literature review is presented in 2.2.

The additions to the knowledge base and the value for the environment will be discus-

sed in section 7.2. In the next section, the design of the case study, which was conducted

in this research project, is presented.

2.1 Case study design

It was necessary to study the environment in which the ISAA is supposed to be implemen-

ted to be able to construct it adequately. However, in the studied literature no sufficient

account of how IT service providers use integrated application systems could be identified.

Therefore, an exploratory case study approach was adopted.

The case study was conducted by following the methodology outlined by Eisenhardt

(1989). It started with building a case base, and then cases were sampled to answer

specific questions. All data had to be collected, processed, and be pre-analysed. More

data analysis and triangulation were performed to answer specific questions (Eisenhardt,

1989).

Johannes Hintsch, M. Sc. 9

Table B.1 gives a quantitative overview of the studied cases. Following the Euro-

pean Commission (2005, p. 14), companies of all relevant sizes were selected. Micro

companies were not considered as they are not within the scope of the ISAA. Its imple-

mentation would likely exceed the capabilities of companies of that size. In addition to IT

service providers, ERP software vendors were included in the case base. As their products

often include process templates (Klaus et al., 2000), they were assumed to have valuable

expertise. Only vendors that specifically addressed the business of IT service providers

were included. All companies headquarters were located in Germany.

Case samplings were performed, and results were previously communicated (Hintsch

et al., 2015b, 2016b). Hintsch et al. (2015b) inquired about the use of ERP systems by IT

service providers. Hintsch et al. (2016b) identified a general structure of the application

system landscapes of IT service providers. These results will, first, be discussed in section

4.1. There, rationales are provided for architecture decisions regarding the composition

of the ISAA’s application system landscape. Furthermore, a case sample is used to derive

stakeholder concerns and define architecture requirements in section 4.2. This case sample

only includes cases, where application system landscape provisioning is a core part of the

business model. Table B.2 gives an overview of all cases, and table B.3 provides a mapping

to their use in the specific samplings.

Data was mainly collected through semi-structured expert interviews. This approach

was chosen due to the study’s exploratory nature. Following the argumentation of Kvale

and Flick (2007), this allowed for more flexibility. Furthermore, the course of the interview

could be adapted to areas where the interviewee was able to share very relevant know-

ledge. Interviews were conducted by telephone and by one interviewer. Two interviewers

conducted all interviews. First, contact with the interviewees was initiated by sending

their companies a half-page description of the research project. Companies were asked to

provide experts from the executive level if possible. Their insight into strategic decisions

would be of particular value (Kern et al., 2002). However, representatives from middle

management or IT architects were also interviewed. As these groups are often responsible

for evaluating and selecting IT solutions (Willcocks and Fitzgerald, 1993), their insights

would also be of value to the study. Interviews were performed between November 2013

and March 2015.

Voice recording was used for all interviews to be able to transcribe them fully. After

transcription, the transcripts were given to the companies to get their consent. In some

cases, interviewees asked to remove certain parts from the interview, which was acceptable

in all cases as no relevant information was taken out. Data was fully anonymized, but

the interviewers were ensured that also the anonymized transcripts would not be fully

published. Editing quests mostly pertained to enhanced anonymity requests. In contrast

to the expert interview, the interviewees of the case study specifically reported on their

companies. That is why the cases are only listed descriptively in the appendix, unlike for

the fully available transcripts of the expert interviews. Hintsch et al. (2015b, 2016b) show

some of the tables that were generated from the transcripts. The catalog of questions

10 An Information System Architecture for ASLPs

for the interviews is presented in section B.2. The interviews centered mainly around the

application system landscapes, the internal and external product representation within

the companies’ application systems, as well as their production process.

When applicable, questions were asked following up on issues, which arose from pre-

vious interviews or within the particular interview. Both, IT service providers and ERP

software vendors were asked the same questions. The software companies were asked,

first, to provide an account of their internal systems. Also, they were asked about the

recommended use of their software product.

The next section reports on the employed methodology to find and review the relevant

literature for this thesis.

2.2 Literature review design

Literature reviews are essential to any scientific work as they position the work inside the

existing body of knowledge. For information systems research, in particular, the case for a

structured approach to conducting literature reviews has been made (Webster and Watson,

2002). Because information systems research is often perceived not to have reached the

matureness of natural sciences (Gregor, 2006), Webster and Watson (2002) argue that

permanent collection and revaluation of previous work is essential. Structured literature

reviews also emphasize the reproducibility principle that scientific work should strive to

adhere to (Kitchenham, 2007; Seuring and Müller, 2008).

With the emergence of large literature databases capable of full-text search, electronic

search is advocated (Kitchenham, 2007). However, scholars also underline the importance

of manual search, for instance by scanning relevant journal’s table of contents or perfor-

ming back- and forward searches (Webster and Watson, 2002; Jørgensen et al., 2005).

Substantial criticism on a rising number of poorly conducted literature reviews has been

raised (Bandara et al., 2015). Structured literature reviews, if conducted properly, may

provide a solid basis for starting a research project or summarizing and evaluating an

existing field (Webster and Watson, 2002). However, particularly for students and young

researchers, it can be challenging to conduct structured literature reviews. Knowledge

about a field may not have reached the maturity of senior researchers. In such cases, the

scoping and definition of search parameters can be aggravated (Schryen, 2015). Three

structured literature reviews were conducted. However, due to the difficulties discussed,

the knowledge base was also searched manually to identify literature that was not found

in the tightly scoped literature reviews. Unstructured search also involves the techni-

ques that are advocated by literature review scholars (e.g., back- and forward searches,

checking literature of central scholars, or browsing proceedings’ and journals’ tables of

content). The difference mostly is that unstructured search is not documented and not

consistently carried out (e.g., not checking all relevant publication outlets with a parti-

cular search technique). Figure 2.2 gives an overview of the literature reviews that were

conducted during this research project.

The first structured literature review (Hintsch, 2013) searched for research on ERP

Johannes Hintsch, M. Sc. 11

Structured literature reviews Unstructured literature review

ERP systems

for IT service

providers Models of IT service

management frameworks

System configuration management

All aspects of the

research project

2013

2016

2017

2014/2015

Figure 2.2: Literature reviews conducted in this research project.

systems for IT service provider. Section 3.2.3 will report on some of the findings of the

identified literature of this review. The second structured literature review (Hintsch and

Turowski, 2013) searched for formalizations of IT service management frameworks. It

was conducted because these formalizations could serve as the basis for the data model

of the ISAA. The third structured literature review (Hintsch et al., 2016a) identified a

substantial amount of publications on and related to configuration management software.

Tools for system configuration management were of particular interest in this research

project because they were analyzed to construct the ISAA (see section 4.3).

2.3 Summary

As previously stated, Peffers et al. (2008) defined a process for conducting DSR. It con-

sists of the following steps: (1) identify problem & motivate, (2) define objectives of a

solution, (3) design & development, (4) demonstration & evaluation, (5) communication.

The problem that is addressed by this project was discussed in chapter 1. The research

background and research gap are elaborated on in the next section. The objectives of the

ISAA are defined in section 4.2 using the results from the case study. There, the practical

relevance of the ASLP type is also further established. The ISAA needs to address the con-

cerns of relevant stakeholders, which include the ASLP as an organization, its employees,

its suppliers, and its customers. In particular, the ASLP as an organization, employees,

and customers are addressed as stakeholders. Their concerns must be analyzed to derive

justified architecture decisions. Suppliers are only marginally considered.

The ISAA will be constructed based on the data from case study and literature reviews

as well as an analysis of technology. In chapter 6, the ISAA will be evaluated following

the framework proposed by Sonnenberg and vom Brocke (2012). The evaluation includes

a justification of the research design, the evaluation of the artifact specification, a prototy-

pical implementation and scenario-based testing, and an expert-interview based validation

of the fundamental architecture decisions and capabilities of the ISAA. Communication of

research is done in form of this thesis.

Johannes Hintsch, M. Sc. 13

3 Research background

This chapter is organized into five sections with various subsections to present the different

relevant fields of research to the reader. Sections 3.1 - 3.4 present those research fields.

Section 3.5 summarizes them and highlights the research gap this thesis addresses.

IT service providers have rarely been the subject of information systems research

when compared to other more predominant topics (Hess et al., 2012). For example, no

established definition exists what IT services and consequently what IT service providers

are (Teubner and Remfert, 2017). This is one reason for defining a specific IT service

provider type for which the ISAA is constructed. Therefore, different definitions of IT ser-

vices and IT service providers are presented in section 3.1.1. IT-related functions within a

company may be organized decentralized or centralized, or they may be offered by inter-

nal and external service providers (Bergeron, 2002, p. 16). Application service providers,

which ASLPs are a specialization of, have received some research attention in particular,

in addition to IT outsourcing in general. Success factors of IT outsourcing, including those

for ASPs and few other providers, are presented in section 3.1.2. These success factors

contribute to the requirements analysis for the ISAA and the answer to RQ2 in section

4.2. In industry, IT outsourcing has been practiced for some time (Lacity et al., 2010).

To facilitate the relationships between IT service consumers and providers, for example

through standardized IT help desk procedures, various IT service management frameworks

have been created by industry consortia and government agencies. These frameworks and

their recent developments will be discussed in section 3.1.3. The conceptual origins of the

de-facto standard ITIL date back to 1989 (Disterer, 2009). Those origins, centering around

the mentioned IT help desk, are still discernible (Marrone et al., 2014). From a research

perspective, issues that overlap with ITSM have been studied in the research stream of

industrialization of IT. Cloud computing can be seen as a manifestation of some of the

principles of IT industrialization (Erbes et al., 2012). Research on the industrialization

of IT and cloud computing is presented in section 3.1.4. Cloud computing is relevant to

the ISAA both from a technical perspective (e.g., to achieve rapid elasticity) and a busi-

ness perspective, for example, regarding pricing and service models (Owens, 2010; Iveroth

et al., 2013).

A substantial amount of information systems research exists on enterprise systems in

general (Schlichter and Kraemmergaard, 2010). Enterprise systems are briefly introduced

in section 3.2.1. Factors for the successful adoption of enterprise management systems are

relevant to this thesis because the ISAA will be based on such systems. These factors are

related to information systems reference models in the sense that they aim at repeatable

14 An Information System Architecture for ASLPs

implementation steps. The factors and reference models are discussed in section 3.2.2.

Whereas for other sectors substantial enterprise system-related research exists, few studies

focus on how application systems of IT service providers are organized, which is the

reason for posing RQ1. The few existing studies are presented in 3.2.3. Observations and

prescriptions of the composition of service systems, of which application systems for IT

service providers are a subset, have been made on the level of meta-models by constructivist

information systems researchers. These meta-models are briefly discussed in section 3.2.4.

Also from a constructivist perspective, considerable research has been conducted in the

area of applying industrial production methods to IT service production. In section 3.2.5,

this transfer-oriented research is presented.

The ISAA should align with current software engineering (SE) process models, and

it should be capable of handling application systems of various architectures. Hence, in

section 3.3, the current trends in SE process models and system architectures are presented.

Operation of application system landscapes, in this thesis, is based on operations

automation approach (cf. Hypothesis 1 and R3). These approaches originate from the

need of administering large numbers of computers, for example in grid computing or

university labs. Configuration management software is a successor to previously manual

administrative work (Talwar et al., 2005; Delaet et al., 2010). This software is discussed

in section 3.4.1. At the time when configuration management software first appeared, the

variability of computer configurations may have been somewhat limited (Anderson, 1994).

However, with the proliferation of IT and IT services, orchestration became a necessity to

map various software configurations to infrastructure resources. Orchestration software is

discussed in section 3.4.2.

Finally, in section 3.5, the research background is summarized, and the research gap

that is addressed by this thesis is highlighted.

3.1 IT service provisioning

Different perspectives exist on what an IT service is. According to Walter et al. (2007),

“IT services aim at the effective and efficient satisfaction of the information demand by

planning, acquiring and operating IT applications and infrastructure.” This definition does

not specify whose information demand is supposed to be satisfied. The following section

discusses different perspectives that are more elaborate.

3.1.1 IT service definitions and IT service provider types

ITIL defines an IT service to be “[...] provided by an IT service provider. An IT service is

made up of a combination of information technology, people, and processes. A customer-

facing IT service directly supports the business processes of one or more customers, and

its service level targets should be defined in a service level agreement. Other IT services,

called supporting services, are not directly used by the business but are required by the

service provider to deliver customer-facing services” (Cannon, 2011b, p. 440). Hereby

Johannes Hintsch, M. Sc. 15

ITIL expresses what an IT service is composed of, whom it is produced for and by whom,

and how its quality goals are agreed upon. The ITIL definition also prescribes a service

hierarchization. Both, Walter et al. (2007) and Cannon (2011b) do not make any further

ascertainments to the kind of IT service provider or the provided services. Zarnekow

(2007, p. 10) and Becker et al. (2011) differentiate IT service providers with industrial

and personal service provisioning (cf. section 1.1). Andersen-Gott et al. (2012) also see

personal service provisioning as one type of IT service provisioning (“selling IT services

such as training, consulting and support”).

Teubner and Remfert (2017) do not include personal IT service provisioning in their

definition. IT services, according to them, can be characterized by six features: (1) IT

services are, first, intangible in the sense that an external factor is required to (2) generate

customer value. The external factor can be a customer business process or an information

object such as an electronic railway ticket Zarnekow and Brenner (2003). (3) The third

feature excludes personal or consulting services. This feature postulates that IT services

are provided using an IT-based infrastructure, or as Zarnekow et al. (2006, p. 29) put it,

a production infrastructure. A production infrastructure comprises application systems,

servers, memory, wide and local area network, as well as workstations (Zarnekow et al.,

2006, p. 29). (4) The fourth feature defines services to be provided industrially. Section

3.1.4 further elaborates on the industrialization of IT research stream. (5) Furthermore,

services are mass-customized. (6) Lastly, IT services should be provided carefree to the

customer. The definition requires that the customer does not come into contact or knows

about the technical realization of an IT service (Teubner and Remfert, 2017).

This thesis follows the definition of ITIL. Industrially provisioned IT services are in

focus. Application services of ASLPs are equipment-based and thus industrially produ-

ced. Personal IT services are included in the ASLP definition when they are provided

alongside industrially provisioned application services. Furthermore, application services

are often mass-customized, but, they don’t always have to be. Custom services can be

provided as well. Of course, efficient and effective practices should also be implemented

for individualized IT services. Although for some customers it can be beneficial not to be

burdened with implementation details, for others such knowledge is necessary. Consider,

as an example, services that are reprocessed to higher valued services in a supply chain

(Hochstein and Uebernickel, 2006). Not all details need to be disclosed to the customer,

but for some customers, it can be necessary to know implementation details, for instance

for auditing (Mansfield-Devine, 2014), but also for technical reasons. ASLPs can act as

internal or external providers. Internal providers often must support the full range of their

organization’s business processes. On the other hand, external providers must react to

market demand and compete with the offerings in the market (Zarnekow, 2007, p. 31).

The success factors of IT outsourcing are presented next.

16 An Information System Architecture for ASLPs

3.1.2 Success factors of IT outsourcing

Riemer and Ahlemann (2001); Currie and Seltsikas (2001) study application service pro-

viders. ASPs exhibit various differentiating characteristics. For example, ASPs can be

specialists or universal providers serving specific or various business functions. Further-

more, Riemer and Ahlemann (2001) differentiate by the degree of standardization, depth

of value creation, and consulting effort. According to their classification, individual ser-

vices do not classify as ASPs. Currie and Seltsikas (2001) define pure-play ASPs which

have similar characteristics to those of cloud computing services (Mell and Grance, 2011).

For pure-play ASPs, Currie and Seltsikas (2001) name scalability, web-centric application

software, and subscription-based pricing models. These criteria are a subset of those de-

fined by Mell and Grance (2011) for cloud computing. Therefore, cloud computing is a

progression of concepts rather than a new idea.

So-called ASP enablers offer infrastructure and other services in Currie’s and Seltsikas’

(2001) taxonomy. This layering of value creation has become particularly prevalent with

the three cloud computing service models of infrastructure, platform, and software as a

service defined by Böhm et al. (2010); Mell and Grance (2011). Very similar to the ASLP

business model, Baun et al. (2011) presents landscape as a service providers. Such offerings

are “[...] targeted at companies which aim at outsourcing their entire data center including

hardware, software, maintenance, and deployment”.

Several of the mentioned authors discussed success factors of the ASP business model

and IT outsourcing in general (Lacity et al., 2010). Riemer and Ahlemann (2001) list

security and privacy as the primary success factor of ASPs. It is followed by a solid backup

plan, satisfying individual customer requirements, and enabling customers to switch to a

different provider, thus reducing lock-in effects. Furthermore, service quality has to be

guaranteed through service level agreements (SLA), precautions against economic fall-out

of the provider have to be documented, the provider has to have knowledge of the industry

sector (Currie and Seltsikas, 2001), and has to offer full single-source solutions. Client

firms outsource to reduce costs, to focus on their core capabilities, access the provider’s

expertise, achieve business process improvements, or due to technical reasons (Lacity et al.,

2010). They often choose not to outsource due to concerns about security and the fear

of losing control (Lacity et al., 2010). The studies by Kappelman et al. (2014); Schneider

and Sunyaev (2016) indicate that, after a decade, privacy remains an issue for customers,

in particular, in cloud computing. The possibility of using private cloud offerings, which

better align with company security policies, in addition to public offerings has not entirely

convinced all customers (Schneider and Sunyaev, 2016).

Traditional IT outsourcing, in contrast to cloud computing, often exhibits large con-

tracts and custom-tailored IT services. In cloud computing, mass-customized services

are often rented by departments rather than through a company-wide structured process

(Schneider and Sunyaev, 2016). Looking at the most successful business models in cloud

computing, Labes et al. (2017) studied 45 cloud providers. They conclude that specia-

lized cloud providers with customer-oriented industry-sector specific solutions are most

Johannes Hintsch, M. Sc. 17

successful, which reflects earlier findings (Riemer and Ahlemann, 2001; Currie and Selt-

sikas, 2001). Providers that enter the market with aggregation services have difficulties

competing. Established companies (experienced players) often are solidly competitive.

They offer public cloud service with little variance to the mass market and are, also, able

to provide good customer support.

Next, IT service management frameworks are discussed.

3.1.3 IT service management frameworks and recent developments

ITIL is recognized as a de-facto standard in the area of ITSM (Wu et al., 2011). ITIL

is organized into five publications (Cannon, 2011b, p. X) that are aligned with the ITIL

service lifecycle. The lifecycle stages are service strategy, service design, service transition,

and service operation. Continual service improvement is applied to the other four stages

but is organized in a fifth book (Cannon, 2011b, pp. X and 432–455). Further ITSM fra-

meworks and standards exist. The ISO/IEC 20000 (Disterer, 2009) can be used to certify

that organizations have implemented IT service management. ITIL focuses on detailed

process descriptions and explains how to implement IT service management (ITSM) .

Complementary, the Control Objectives for Information and related Technology (COBIT)

(Lainhart et al., 2012) describes key-performance indicators to measure ITSM and other

IT-related processes (Cannon, 2011b, p. 395).

While ITIL is in widespread use, it is criticized for its lack of formalization (Ho-

chstein et al., 2005). Consequently, Hintsch and Turowski (2013) reviewed literature that

presented formalizations of IT service management. Three works stood out regarding con-

sistency and comprehensiveness. Goeken and Alter (2009) present a COBIT meta-model.

It can be used for comparing ITSM frameworks, for example, for completeness. When

implementing new processes, the meta-model can be used as guidance to ensure COBIT

compliance. In a similar direction, Valiente et al. (2012) develop an ITIL ontology and

add semantic constraints. Thereby they can check newly defined process models to be

ITIL compliant. Brenner et al. (2009) make a case for the necessity of ITSM application

software interoperability. Providers increasingly rely on ITSM software from different ven-

dors. They adapt and extend the Shared Information/Data Model to the domain of IT

service management by making it compliant with ITIL and ISO/IEC 20000. Similarly, the

IT4IT reference architecture offers an information model to enable inter-tool compatibility

(The Open Group, 2017; Andenmatten, 2017).

Investigating how pervasively ITIL is implemented, Marrone et al. (2014) conducted

surveys with a total of 623 responses. ITIL’s operational level processes, such as incident

management, are more likely to be implemented than the tactical/strategic level processes.

Earlier versions than the current 2011 edition of ITIL comprised publications on service

operation and service delivery, which may explain this tendency. While ITIL originates

from a 1989 ITSM publication of the British government the current lifecycle model, inclu-

ding service strategy and continuous improvement, was only introduced in 2007 (Disterer,

2009). Marrone et al. (2014) further explain organizations are more likely to implement

18 An Information System Architecture for ASLPs

operational level processes by citing Lange (2007): “Incident management helps [chief

information officers] focus on restoring normal service levels as quickly as possible with

minimal disruption to the business. Incident management can also reduce service inter-

ruptions in the future, increase the efficiency of in-house IT staff communications and

systems in general, and improve user satisfaction”. This observation is also reflected in

an industry benchmark that studies the degree to which ITSM software has implemented

ITIL processes (Pink Elephant, 2017). While all prior-2007 processes are included, current

processes such as Information security management or demand management are not part

of the benchmark.

ITIL is criticized by some for its lack of agility, little reflection of current technologi-

cal developments and accompanied progress in software engineering process models. This

can in part be explained its’ origins that date back almost three decades. For instance,

Andenmatten (2017) suggests the relinquishment of ITIL’s change advisory boards that

expensively had to review individual changes to providers’ IT system landscapes. Automa-

tion and virtualization enable software engineers to test their software in production-like

environments. No complex quality assurance environments are required (Spinellis, 2012).

Automated regression tests can be performed by single developers or in central deploy-

ment pipelines (Humble and Farley, 2010, p. 61). These trends are not well reflected

in ITIL (Andenmatten, 2017). Continuous delivery and its technical foundations will be

elaborated on in sections 3.3 and 3.4.

The increasing convergence of developers and operations is termed DevOps. Develo-

pers and operations professionals are required to work closely together to keep up with

agility demands of the business (Ebert et al., 2016). Consequently, DevOps is strongly

related to agile project management approaches like Scrum (Ebert et al., 2016). While

Scrum has some semi-formal guidelines (Dyb̊a and Dingsøyr, 2009), DevOps can be under-

stood as a philosophy of desired organizations’ SE practices such as continuous delivery

and supporting technical capabilities (Ebert et al., 2016). DevOps will be discussed in

relation to SE process models in section 3.3.1.

Application software, supporting IT service management as defined by ITIL is in

widespread use, for example in incident management (Fischer et al., 2012; Marrone et al.,

2014; Hintsch et al., 2015b). ITIL states that “[c]urrent tools represent a paradigm shift

into the new era of enterprise resource planning (ERP) systems for IT” (Lloyd, 2011, p.

145). As their foundation, ITIL describes databases that are used to manage the data

of all ITIL processes. These databases are integrated into a so-called service knowledge

management system. Other databases include the configuration management database

(CMDB) where information on all configuration items (CI) is stored (Rance, 2011, p. 96).

CIs can be software or hardware components, or any other component, that are required

to provide a service. In ITIL, no constraint is made concerning the kind of IT service

provider for which such systems are suitable. Similarly, Betz (2011, p. 131) states that

“[...] a large IT organization needs to have most or all [...]” of the systems he describes.

In a multi-case study, Hintsch et al. (2016b) could show that the nature of an IT service

Johannes Hintsch, M. Sc. 19

provider affects their application system landscape after all. Although different provider

types may use similar systems, the systems that are mission-critical differ significantly.

Examples of IT service management systems include ServiceNow ITSM or BMC ITSM. In

the domain of SAP enterprise management software, the SAP Solution Manager is often

used.

IT4IT is designed to be compatible with ITIL. The standard describes the appli-

cation system components that are required for implementing IT service management

functions more specifically than ITIL. DevOps and agility are claimed to be embraced

by IT4IT (The Open Group, 2017, sec. 3.3.2)1. It is closely related to the provisions

made by Betz (2011) who is a key contributor to IT4IT. It is vendor- and process-agnostic

(The Open Group, 2017, preface). IT4IT’s application system architecture is organized

into five levels. Level one to three are part of the standard. Levels four to five are not

specified. Software vendors may define how these levels are implemented in their re-

spective products. The standard may achieve interoperability between software products

by different vendors as demanded by Brenner et al. (2009). IT4IT’s first level provides an

overview. It includes four primary activities2, called value streams: strategy to portfolio,

requirement to deploy, request to fulfill, and detect to correct. The application system

components are mapped to these value streams, and key data objects are used to repre-

sent the information exchange between the components. Level 2 can be understood as

a more detailed description of level 1 including relationships between data objects and a

more detailed definition of data flow between functional components (The Open Group,

2017, sec. 4.2.3). Level 3 adds scenarios, essential services, and attributes, which key data

objects must have at least (The Open Group, 2017, sec. 4.2.6). Scenarios are comparable

to groupings of agile user stories (epics). They are used to “explain, enhance, or modify”

IT4IT (The Open Group, 2017, sec. 4.2.6). The Open Group (2017, sec. 4.2.6.1) sta-

tes that the three scenarios “IT Financial Management – IT service cost transparency”,

“Agile Scenario – DevOps[...]”, and “Multi-vendor Incident Management” are currently in

development. They have not been published yet. Essential services support the scenarios

and can, for example, be implemented as web services to achieve the discussed interope-

rability between different vendors’ software products (The Open Group, 2017, p. 4.2.6).

Those services have, however, not been defined yet (The Open Group, 2017, sec. 4.2.6.3).

IT4IT does not make any statements as to which providers should use it, but a focus on

companies developing their own software under the DevOps philosophy as well as those

employing ITIL’s incident management is evident.

Gartner (2017b) uses the term IT service support management tools for ITSM soft-

ware and also points to their origins as IT help desk tools. This origin was also reflected

in the interviews from the preliminary case study (see sections 2.1 and B.1) where re-

spondents often put the IT help desk or ticketing software on a level with “our ITSM

1The current version of the IT4IT reference architecture is available online at pubs.opengroup.org/it4it/
refarch21/, last accessed on January 16, 2018. Consequently, references can only be made to section
not page numbers. Sections are abbreviated with sec.

2IT4IT aligns with the value chain by Porter (1985, p. 37) as was done by Betz (2011, p.45) and Hintsch
et al. (2015b).

pubs.opengroup.org/it4it/refarch21/
pubs.opengroup.org/it4it/refarch21/

20 An Information System Architecture for ASLPs

tool”. This statement is not surprising due to the discussed initial focus of ITIL initial on

these process areas. Nonetheless, ITSM software products have evolved and now include

process support for most of ITIL-defined processes (Pink Elephant, 2017). A trend can

be observed that companies like ServiceNow include traditional enterprise management

functionality in their ITSM software (Hintsch et al., 2016b). Most of these ITSM soft-

ware products have integration points with ERP systems. Seamless project and resource

management are advertised for SAP solution manager as benefits when integrating with

SAP ERP (SAP SE, 2015b). ServiceNow ITSM and BMC ITSM both have interfaces to

ERP systems of large vendors, either file or web service based (ServiceNow, Inc., 2015b;

BMC, Inc., 2017). Systems like ServiceNow ITSM, a software as a service offering, are

trying to become the leading systems in IT service providers’ application system landscapes

by integrating traditional ERP functionality like human resource or financial management

into their portfolio (ServiceNow, Inc., 2015a).

As previously mentioned, ITIL is criticized by some for its rigidness (Andenmatten,

2017). Mansfield-Devine (2014) describes the difficulty in recording all changes made by

employees to the IT systems of a company. Comprehensive and consistent change manage-

ment is advocated by ITIL (Rance, 2011, p. 60). Employees easily divert from regulations

to document small changes. To identify the cause in cases of problems, Mansfield-Devine

(2014) suggests monitoring all changes made to the application system landscape automa-

tically. Configuration management software, which is discussed in section 3.4, can assist

in this attempt to help with audits and problem analysis.

The next section discusses the industrialization of IT and cloud computing.

3.1.4 Industrialization of IT and cloud computing

Within this section, the very limited empirical research on industrialization of IT will

be discussed. According to Hochstein et al. (2007), four principles of industrialization

should be examined from the perspective of IT service provisioning: standardization and

automation, modularization, continuous improvement process, and the concentration on

core competencies. In particular, the concentration on core competencies is a principle

that is manifested in cloud computing, which is also discussed.

Becker et al. (2011) conducted a study amongst ten IT service providers based in

Germany. Cloud computing is seen to have substantial industrialization potential by one

of the companies. Regarding product standardization, the majority of companies offers IT

services as clearly defined products. ITIL is used for process standardization by the ma-

jority of the cases, among other frameworks for process quality and project management.

Products are modularized, but in some cases, customer requirements are too individual

for mass customization. The service provisioning is reported to be increasingly automa-

ted, on average it is at 47 %, but respondents saw room for improvement to automate

processes. Regarding capacity management, methods from IT service management are

more predominant than from physical goods manufacturing such as production planning

and control (PPC) . The companies mainly source hard- and software and only a minority

Johannes Hintsch, M. Sc. 21

Application

software

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Application

software

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Application

software

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Application

software

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

managed by customer

managed by provider

Traditional IT

(on premises)
IaaS PaaS SaaS

Figure 3.1: IT stack in different service models, based on Stallings (2017).

obtain IT services from other providers. The quality of services is measured by some of the

companies who adopt and use standards-based quality management frameworks. Becker

et al. (2011) identify the potential for improvements in the areas of sourcing, automation,

process standardization, and modularization.

First journals using the term cloud computing appeared in the year 2007 (Yang and

Tate, 2012). As stated the concentration on core competencies is particularly observable in

cloud computing (Mell and Grance, 2011), but has of course been observable in traditional

IT outsourcing for decades (Lacity et al., 2010). The cloud computing intertwines business

and technical service concepts. In traditional outsourcing, the provider and consumer

usually maintain a close relationship. In cloud computing, relationships can be short-lived

and subscription based. Offered services range from public and private infrastructure

services (e.g., Microsoft Azure3) to human resources services (e.g., Amazon Mechanical

Turk4). Therefore, the term everything as a service is sometimes used (Baun et al., 2011, p.

17). However, cloud computing is mostly associated with the service models infrastructure

(IaaS), platform (PaaS) , and software (SaaS) as a service. Figure 3.1 displays these models

in contrast to the traditional on-premise model. The figure shows that a customer can

choose to outsource different layers of his IT stack to a cloud service provider.

The technological foundations of the different deployment models will be further des-

cribed in section 3.4. Significant benefits associated with cloud computing such as elasticity

and self-service (Owens, 2010; Hsu et al., 2014) are achieved based on these technological

foundations. Reduced costs, another major benefit (Hsu et al., 2014), is also made possi-

ble by virtualization and other technological foundations, but also by broader trends such

shared services (Bergeron, 2002) and pay-per-use (Armbrust et al., 2010; Iveroth et al.,

2013). In shared services, customers can profit from reduced costs due to economies of

3https://azure.microsoft.com
4https://www.mturk.com/

https://azure.microsoft.com
https://www.mturk.com/

22 An Information System Architecture for ASLPs

scale on the provider’s side. The provider concentrates know-how and equipment to pro-

vide services and therefore may be able to offer lower prices at better or equal quality as

compared to providing such services in-house.

Pay-per-use pricing models can be attractive in scenarios with varying demand or

in situations where full investment decisions are difficult. Consider the example of a

provider who wants to try out a new technology that requires more potent hardware.

The pay-per-use model enables them to test scenarios without having to invest a sizeable

up-front sum. Iveroth et al. (2013) proposes a five-dimensional pricing model that can

be applied to products and services. It can also further differentiate cloud computing

services. The dimensions are scope (package to attribute), base (cost, competitors’ price,

and customer value), influence (e.g., price list or negotiation), formula (e.g., fixed price

regardless of volume or per unit price), and temporal rights (e.g., subscription or pay-

per-use). Particularly relevant for cloud computing are pricing models where temporary

access is granted pay-per-use-based (Mell and Grance, 2011).

Hsu et al. (2014) suggests that the adoption of cloud computing is still at its initial

stage with 30 % of the studied companies having adopted SaaS, five % PaaS, and 13

% IaaS. Nonetheless, Ng et al. (2017) estimate that in 2017 the revenue of the public

cloud computing will have further grown by 18.5 %. Hsu et al. (2014) found that firms

with higher IT capability, regarding number of IT employees and IT budget, are more

likely to use cloud computing. in contrast to cloud providers’ advertisements and popular

belief, cloud computing is often not a viable option for small and medium-sized enterprises

Hsu et al. (2014). Companies that have a high degree of IT capability and therefore a

particular size above that of a small and medium-sized enterprise are more likely to adopt

cloud computing.

In the next section, the research background on application systems for enterprises in

general and IT service providers, in particular, will be presented.

3.2 Enterprise management systems

Systems “[...] are man-made and may be [comprised of] one or more of the following: har-

dware, software, data, humans, processes (e.g., processes for providing service to users),

procedures (e.g., operator instructions), facilities, materials and naturally occurring enti-

ties” (ISO/IEC/IEEE, 2015). Application systems comprise application software and the

respective data (Stahlknecht and Hasenkamp, 2005, p. 226). The application software is

written for a specific application field such as accounting or human resources. Within this

thesis, the term application field will be used synonymously with business function. A

business function can be nested (Weske, 2012, p. 75). Consequently, application systems

can support larger application fields or just therein contained business functions.

Traditionally, application software and system software are differentiated (Laudon

and Laudon, 2005, p. 203). This distinction is not always expedient though. For example,

consider the case of a hypervisor, “[...] computer systems that present a very basic user

program interface-one which is so nearly identical to a particular computer machine inter-

Johannes Hintsch, M. Sc. 23

face that an operating system intended to support such machines may serve as a hypervisor

user program without software modification” (Hendricks and Hartmann, 1979). Hyper-

visors may be considered as system software, “[which manages] the computer’s resources,

such as the central processor, communications links, and peripheral devices” (Laudon and

Laudon, 2005, p. 203), p.203). However, the hypervisor is also essential to the busi-

ness function of providing virtualized infrastructure services (see section 3.3.2). System

software can refer to software like operating systems or database management systems

(Stahlknecht and Hasenkamp, 2005, p. 227). Application systems may in some cases be

in such tight dependency with system software, or even hardware that system software

and hardware are included in the definition of application systems in the broader sense

(Stahlknecht and Hasenkamp, 2005, p. 227). However, within this thesis, this broader

definition will not be used. System and application software will be mentioned separately.

The next section will briefly define the established research area of enterprise systems.

3.2.1 Definition of enterprise systems research

Enterprise systems integrate all business functions of an enterprise as well as its resources

into a common database to support transactional and analytical purposes (Davenport,

2000, p. 2). Such systems provide managers with the comprehensive view of the company

needed for decision-making (Davenport, 2000, p. 2). Gartner (2017a) define these systems

to be able to “[...] control all major business processes in real time via a single software

architecture on a client/server platform [...].” Most often this idealized definition does not

reflect reality. For example, different products by companies such as SAP or Microsoft

exist for financial planning, customer relationship management, or business intelligence.

Literature also reflects this differentiation (Botta-Genoulaz et al., 2005; Chen and Popo-

vich, 2003; Møller, 2005). Vendors usually sell enterprise software as standard software

packages. These packages target an anonymous market and therefore need to be customi-

zed for each customer (Klaus et al., 2000). In contrast, custom software is developed for

an explicit use case by the IT department of a company or an IT service provider (Rau-

tenstrauch and Schulze, 2003, p. 282). It is a trade-off for a company to choose either

standard or custom software. Standard business functions might match the provisions of

standard software, while other functions might be critical for competitive advantage and

therefore require custom software (Rautenstrauch and Schulze, 2003, p. 282).

Enterprise software is often also referred to as ERP software, although this term

is criticized by some (Davenport, 2000, p. 2). The criticism stems from ERP’s origin

in material requirements planning and that it is usually an umbrella term rather than

a specific software (Klaus et al., 2000). Within this thesis, ERP, CRM, or SCM5 are

combined under the term enterprise management. In section 4.1, the application system

landscapes of IT service providers are investigated, and enterprise management software

is delimited from other application software used by IT service providers.

5Supply chain management (SCM)

24 An Information System Architecture for ASLPs

Defying criticism, the term ERP term is pervasively used to identify a significant

research stream within information systems research. Several structured literature re-

views have been conducted to summarize the state of the art (Esteves and Pastor, 2001;

Botta-Genoulaz et al., 2005; Esteves and Bohórquez, 2007; Schlichter and Kraemmergaard,

2010; Eden et al., 2012). Schlichter and Kraemmergaard (2010) state that the research

stream has reached a certain level of maturity with a large body of accumulated aca-

demic knowledge in different categories. ERP implementation is the category which is

researched most (Eden et al., 2012). In the implementation category, factors of adopting

enterprise management systems are most often discussed. Information system reference

models have particularly been researched by German DSR-oriented information systems

academics (Scheer, 1997; Becker and Schütte, 2004; Fettke and vom Brocke, 2016).

3.2.2 Factors of adopting enterprise management systems and
information system reference models

Organizations, according to Gronau (2010, p. 12), implement enterprise management

systems due to various reasons. The systems decrease cycle times. Orders, for example,

can be processed faster due to a reduced data management effort based on a common

database. The financial situation can be advanced with stock control and an automated

dunning process. Vendor-provided so-called best practice process templates can improve

business processes.

Regarding templates, design science-oriented information systems research has con-

tributed reference models to the knowledge base. These models provide guidelines on how

enterprise management systems should be structured. They aim to provide repeatable in-

structions for deriving company specific models, for example, data models. Scheer (1997)

provides a reference model for enterprise management systems in manufacturing, inclu-

ding organizational, process data, and functional views. Each view is detailed into three

description levels, ranging from business concept to implementation layer (Scheer, 1997,

p. 14). Becker and Schütte (2004) provide such a reference model for commerce. How

to explicate the general validity of a reference model is an unsolved research issue (Fettke

and vom Brocke, 2016). Although general validity cannot be proven, reference models can

be useful and are adapted in practice (Scheer, 1997; Becker and Schütte, 2004; Fettke and

vom Brocke, 2016).

The reference model by Scheer (1997, pp. 91–93) is commonly associated with the

Y-CIM model. CIM stands for computer-integrated manufacturing. The Y-CIM mo-

del describes the relationships between the logistical subsystems (e.g., order management

or material management) and the systems supporting product development and the ac-

tual fabrication of those products. In product development, parts can be drafted with

computer-aided design models including simulating their performance in their designated

application. The fabrication of these parts is finally performed by computer numerical

control machines (Goettsch and Tosse, 2013). Computer-aided design tools support the

modularized construction of more complex parts. In a mature information system that is

Johannes Hintsch, M. Sc. 25

supported by comprehensive computer-integrated manufacturing technology the following

scenario is feasible. Harrison and van Hoek (2008, p. 152): “[...] Formerly, [the ETO]

process had taken two weeks, because a design engineer had to develop an entirely new

design from scratch based on the customer order. Designs have now been modularised as

a result of the new system: that is, a new design is produced from a few hundred stan-

dard ’modules’ that are held on file. This can be done by a sales engineer in a matter of

hours. If a tender is accepted by a customer, it had formerly taken another two weeks to

convert the tender information into specifications and drawings for manufacture. Today,

it is possible simply to send the accepted tender information to the shop floor, and to use

the set of standard engineering information already held on file to act as manufacturing

instructions. The following is a list of the main features of the new [just-in-time] system.”

Gronau (2010, p. 12) adds the following benefits of enterprise management systems.

General productivity improvements may be achieved, for instance, with better asset li-

ability management. Supply chain management features boost the link with suppliers

and customers. The systems can also be used as back-end systems that interface with

customer-facing web shops. Furthermore, cross-departmental access to data is improved,

which helps in planning and controlling. Finally, communication between the company,

its customers, as well as suppliers can be improved.

Ngai et al. (2008); Momoh et al. (2010) identified various critical success factors re-

garding enterprise management system implementation. These factors include the need

to overcome the complexity of legacy systems, a working change management program,

general good communication within the company, as well as data management to ensure

the accuracy of data. Further factors include rigorous testing, for instance of software

integration between legacy and ERP systems, and ensuring that the ERP system fits the

business practices and processes of the company. Furthermore, excessive customization

should be avoided to be able to manage system complexity and not to exceed budgets.The

dilemma of internal integration refers to the phenomenon that, globally, integration is a

benefit, but that, locally, requirements may not be met as a result of integration. Also,

hidden costs (such as those for data conversion, training, or consulting) or limited training

can endanger am enterprise management system implementation project. Top manage-

ment support and training and education, according to Ngai et al. (2008), are the most

frequently cited critical success factors in literature.

Enterprise management systems promise various benefits. These critical success fac-

tors and challenges show that implementing these systems is a costly and challenging

endeavor for organizations. Within the next section, the related work on application

system for IT service providers is presented.

3.2.3 Enterprise management systems of IT service providers

To identify literature on enterprise management systems for IT service providers and given

the importance of the term ERP for this research field, Hintsch (2013) conducted a litera-

ture review titled ERP for the IT service industry. This review sought to identify research

26 An Information System Architecture for ASLPs

on ERP systems for IT service providers that considers the available ITSM frameworks as

a basis for ERP systems’ business process templates. Following the methodology of Seu-

ring and Müller (2008), Hintsch (2013) searched for works in all journals, and conference

proceedings ranked A and B by Sprecher der WKWI und GI-FB WI (2008). As described

in section 2.2 on literature review design, the review searched for works containing key-

words from three categories. IT service providers, as explained in the previous section, are

a large group of different companies. Their specific business models are referred to in spe-

cific terms. Therefore, the first keyword category contained different terms referring to IT

service providers (e.g., infrastructure or platform service provider). In the previous section,

the predominance of ITIL as a common practice framework was mentioned. However, va-

rious other frameworks have been mentioned in literature (Hintsch, 2013). Therefore, the

second keyword category contained the names of all identified ITSM frameworks (Hintsch,

2013). The third category contained different terms referring to enterprise management

systems. Only six individual works could be identified. Amongst them, the same research

group authored five and only one was an individual research paper.

The research group contributing the five works was part of a competence center at

the University of St. Gallen (Ebert, 2009, p. i). Between the years 2007 and 2012 several

dissertations and peer-reviewed publications relevant to this thesis were published (Ebert

et al., 2007; Ebert, 2009; Vogedes, 2011; Dudek et al., 2012; Pilgram and Vogedes, 2012).

They will be discussed in section 3.2.5. Wittgreffe et al. (2006) authored the individual

work identified in the review. They report on the architecture of the application system

landscape in operation at British Telecommunications. The landscape features a common

data model. With its system, British Telecommunications automates activities such as

service provisioning, change management, billing, and incident management, although

it does not become clear to what extent. To support these different activities, specific

platforms exist, many consisting of commercial off-the-shelf software, that are integrated

with each other following a service-oriented architecture approach (cf. section 3.3.2). The

customers of British Telecommunications require evidence of best practices. Consequently,

processes are designed to be compliant with ITIL, particularly regarding service operation.

Although a broad range of services is described to be supported by the authors, network,

and infrastructure services are in focus. While the architecture is described holistically,

discussions concerning the specifics of the data model or implementation are missing.

From a behaviouristic research perspective, Botta-Genoulaz and Millet (2006) inves-

tigated the ERP system adoption by service companies. Out of six cases, one software

company as well as one telecommunications and internet service company were studied.

The former used SAP ERP for material management, sales and distribution (essentially

billing), finance and accounting, workflow functionality, and CRM. Also, the company

utilized specific software for service delivery and software development. The latter used

PeopleSoft for accounting and a separate industry-specific software system for supporting

operations. The authors conclude that human resource management is rarely fully inte-

grated, although full integration is one of the main benefits of ERP systems. According to

Johannes Hintsch, M. Sc. 27

Botta-Genoulaz and Millet (2006), such seamless integration, as witnessed in ERP systems

of production firms, is unintended by the studied companies. However, such integration

is required to reach a maturity level of 3 of 5 as defined by Richter and Schaaf (2011). On

maturity level 3, “[...] most important processes [need to be] supported by tools and the

central tools [need to be] interconnected in a way that they can share data in an efficient

way [...]” (the term tool is used synonymously with application system). Level 4 requires

comprehensive basic tool-support and that “[...] central processes can work very efficiently

because of an optimized tool landscape” (Richter and Schaaf, 2011). The highest level of

maturity is reached when “all tool areas are fully implemented, and processes can bene-

fit from optimal tool support [and] continual improvement of the tool landscape is also

addressed” (Richter and Schaaf, 2011).

More generally, service system meta-models address the integration of different actors

(software, humans, and organizations) in service systems. These are briefly presented in

the next section.

3.2.4 Service system meta-models

Übernickel et al. (2006) address the service engineering process specifically and suggest

an approach for information systems service engineering, including an IT service meta-

model, but no illustration of how instantiations of this model can be used in the respective

steps is provided. Böhmann et al. (2003) proposes a concept to build modular services.

They emphasize the importance of module boundaries and interfaces. However, their

modules are rather abstract like “application support” or “ERP operations and backup”.

A domain-specific language (DSL), including a meta-model, for IT services is provided

by Frank et al. (2009). Its goals include the analysis of information system landscapes,

the development of IT management tools for building IT services, as well as the usage

of the models to monitor IT services during operation. The DSL is integrated into a

framework including other layers of enterprise architecture (Frank, 2014). The DSLs focus

on providing graphical modeling to users with different technical knowledge to achieve a

better business / IT alignment. As such, the DSL is more intended to document an IT

system landscape than to plan or design it.

A very generic meta-model for service systems is provided by Alter (2011). He relates

entities that interact in service systems. Such as actors might be customers and providers.

Customers can buy products or services that are produced by activities using resources.

However, there is no elaboration as to what architecture service systems should have,

how products are structured or what resources are used to support the product creating

activities. A more specific meta-model that could be used as a basis for a data model

for an enterprise management system for IT service providers is presented by Ebert et al.

(2007) on the basis of (Übernickel et al., 2006). It includes entities of four categories:

resources, process, output, and customer. These entities correspond to those involved in

IT service production (Zarnekow, 2007; Teubner and Remfert, 2017). The domain model

of the ISAA adopts and adapts the model by Ebert et al. (2007).

28 An Information System Architecture for ASLPs

The next section describes research of applying industrial methods, mainly from ma-

nufacturing, to IT service production.

3.2.5 Industrial methods for IT service production

Applying methods from manufacturing to problems of IT operations was done as early

as 1991. Lebrecht (1991) suggested the applicability of PPC systems to the operation of

data centers. He demonstrated how scheduling of batch jobs and coordination of printing

documents could be performed. The idea of reusing PPC functionality and ERP systems

was taken up again by authors like Ebert (2009) and Pinnow (2009). They apply PPC

to industrial IT service provisioning. Both of these research works, as well as those of

Vogedes (2011) and Dudek et al. (2012), positioned themselves in the IT service production

management framework of Zarnekow (2007). In consequence, the works by Ebert (2009),

Vogedes (2011), and Dudek et al. (2012) share a common understanding of the structure

of IT services and the relationship between IT service provider and consumer.

Zarnekow (2007, p. 109) mentioned ERP system and PPC adoption to IT service

provisioning but left a detailed concept to subsequent work. Pinnow (2009) provides such

a detailed concept. He describes how to use PPC to use the capacity of virtual machines

fully. Technically, IT service production is treated like make-to-order process manufactu-

ring (Pinnow, 2009, p. 36). Current scenarios require rapid scaling to demand (Owens,

2010). This requirement makes capacity planning with infrequent PPC runs a poor choice.

Capacity management for virtual machines received considerable research attention out-

side the research stream of industrialization of IT (Jennings and Stadler, 2014). Wuhib

et al. (2013), for instance, demonstrate how to manage capacity of state-of-the-art IaaS

systems automatically. Such techniques, closely integrated with the hypervisor, appear to

be more practical than the proposed implementation with an ERP system’s PPC functi-

onality.

Ebert (2009) and Vogedes (2011) address PPC in industrial IT service provisioning,

aligned with the framework by Zarnekow (2007), not only on the infrastructure layer but

also the application layer. The authors use a transfer-oriented research design and apply

production theory to IT service provisioning (Ebert, 2009, pp. 100–107). Ebert (2009,

p. 100) maps the entities of the domain of IT service production to master data of the

ERP system, as is done in this thesis (see section 5.1.4). Mainly, two kinds of services

are considered (Ebert, 2009; Vogedes, 2011). The first service is a managed desktop

service where service technicians physically set-up the computer and react to problems

that cannot be solved remotely. The other service is an SAP ERP hosting service. IT

services are mapped to materials. Physical and virtual servers are individually modeled as

equipment because they are treated without an additional abstraction layer. Furthermore,

routings are used to describe the steps in detail that need to be carried out to provide a

service. Ebert (2009) uses the ERP’s PPC functionality mainly to plan and coordinate

the different departments involved in deploying and changing an IT service. Ebert (2009,

p. 206) integrates machine capacity planning capability to the concept, for example for

Johannes Hintsch, M. Sc. 29

physical and virtual servers. From a process perspective, the deployment and operation

phases of the service lifecycle are supported.

Dudek et al. (2012) adds variant configuration to the PPC concept of Ebert (2009);

Vogedes (2011). However, Vogedes (2011, p. 211) is skeptical about the ability to offer

different services. Variability can only be achieved based on alternative IT services in

the material master. IT services cannot be modified based on the operations contained

in the routings. The routings define how a service can be deployed, which therefore is

a constraint. Vogedes (2011, p. 210) describes the integration of manufacturing execu-

tion functionality and improvement of automation for the concept as possible paths for

future work. Pilgram and Vogedes (2012) summarizes work of the St. Gallen university’s

competence center and states that IT service production aligned against the framework of

Zarnekow (2007) can be supported with ERP systems.

In the next section, current software engineering process models and system architec-

tures will be discussed.

3.3 The development towards DevOps and microservices

General issues that have been discussed in software engineering include managing deve-

lopment costs, time-to-market, dealing with incomplete requirements, software quality, as

well as software maintenance (Naur, 1969). These issues remain major challenges for soft-

ware and systems engineering. In the following section, different process models within

software and systems engineering will be discussed leading to the DevOps philosophy.

Software engineering process models have interdependencies with system architectures.

System architectures that pre-dated the currently en vogue micro-services will be descri-

bed in section 3.3.2.

3.3.1 Software engineering process models

The process of developing software and the question of how it should be structured has

attracted researchers as early as 1956 (Boehm, 1988). Early results of this research field

were formalized into the waterfall model that proposed a stepwise approach to the soft-

ware development process. The steps include the assessment of feasibility of the planned

software, creation of software plans and requirements, product design, detailing of that

design, the actual coding of the different software units, integration of the units into the

complete software, implementation of the software in the production environment, and

lastly the operation and maintenance of the software in production. At the end of each

step, the work results are validated, verified or tested (Royce, 1970).

Current SE process models still include these steps, but the steps are aligned diffe-

rently. The waterfall model has been criticized, for example, because each step of the

process model is performed concerning the full system. If relevant requirements are mis-

sed early on, changes in later phases can be costly (Boehm, 1988). To alleviate such risks

Boehm (1988) suggested the spiral model, incorporating the steps of the waterfall model

30 An Information System Architecture for ASLPs

as well as the incremental and evolutionary models. The spiral model is based on risk

analysis and prototyping. For instance, each cycle includes objective (re-)determination,

risk analysis, development, and planning. Only in later cycles will actual development of

the operational prototype begin (Boehm, 1988).

Due to increasing failures of projects that employed plan-driven process models (e.g.,

waterfall or spiral) agile software process models were introduced in the 1990s (Tarhan

and Yilmaz, 2014). On the one hand, plan-driven models emphasize that problems need

to be specified entirely and planning to be done rigorously. Furthermore, adherence to

pre-defined processes and regular documentation is valued by these models (Tarhan and

Yilmaz, 2014). Agile models, on the other hand, favor close cooperation between de-

velopment teams and customers rather than full upfront requirements analysis, software

that works rather than extensive documentation, collaboration with customers over the

negotiation of contracts, and rather than planning, responding to changes (Tarhan and

Yilmaz, 2014). Based on their qualitative and quantitative study results, Tarhan and

Yilmaz (2014) state that agile process models lead to increased productivity, lower defect

density, faster defect resolution effort ratio, more effective tests, and more accurate effort

prediction capability. Agile process models, among others, include extreme programming

or the more general project management method Scrum.

Extreme programming focuses on small releases of software, fast feedback, integration

of the customer in the development process as well as continuous integration and testing.

Limited documentation and pair programming are also emphasized (Tarhan and Yilmaz,

2014). Continuous integration of new features into the main code branch and continuous

delivery of these new features into the production environment depends on tool support

(Humble and Farley, 2010). In a continuous deployment pipeline, smaller code units of

code are checked into the project’s code repository. Next, all available unit tests are run,

and the code is checked for possible side effects that were introduced by the newly added

code unit. High unit test coverage and comprehensive integration tests are essential to

detect errors in new releases early on (Beck, 2002, p. 67).

Continuous delivery has received particular attention since new features, requested

by the business, can be integrated into the production system without extensive upfront

testing (Feitelson et al., 2013). This rationalization enables a swift reaction to business

requirements or changes in the market (time-to-market).

Continuous delivery and its continuous deployment pipeline through which code flows

from the version control system to production are also part of the DevOps philosophy (Spi-

nellis, 2012). Thus far, it remains a philosophy rather than an established method Alt et al.

(2017). With the business’ increasing demand for agility, operations teams are challenged

to provide stable production environments that can handle the new features coming from

development. The two goals of being able to deploy new features frequently and maintain

stable and available systems are in conflict (Alt et al., 2017). Hence, DevOps promotes

the close cooperation of developers and system operators (system administrators).

Willis (2010) formulated four basic principles for DevOps that got to be known and

Johannes Hintsch, M. Sc. 31

recognized (Alt et al., 2017) under the acronym CAMS. It stands for culture, automation,

measurement, and sharing. DevOps culture means a shift to cross-department collabora-

tion as well as the stronger integration of the customer into the process (Alt et al., 2017).

The stronger relationship with the customer highlights some of DevOps foundations in the

agile methodologies (Willis, 2010). All DevOps teams are required to take increased re-

sponsibility for the final product and customer satisfaction (Alt et al., 2017). Automation

is the second principle, and this principle is a core theme of this thesis. The continuous

deployment pipeline, as well as monitoring and orchestration software, are often mentioned

as necessary software products in this regard (Willis, 2010; Ebert et al., 2016).

Ebert et al. (2016) align several specific software products to a continuous deployment

pipeline that they call “DevOps architecture”. It is shown in Figure 3.2. This specific

pipeline includes the software Rake for build and code library management. Rake is used

by the development team to combine theirs’ and others’ libraries with the code of the

team’s current project. How exactly this combination is performed to build executable

programs or shippable libraries, is formalized in build instruction files. The Rake build

instruction files, together with the project’s code libraries, are stored in the version control

system (repository). There, the formalized instructions to build the development, testing,

and production landscapes are stored as well. The landscape build instruction files can be

scripts, language-based, or model-based configuration specifications (Talwar et al., 2005).

The continuous integration server, in this case Jenkins, uses software build instruction files,

unit, and integration tests, as well as landscape build instruction files to build and test the

project’s software. The public IaaS service Amazon Web Service6 and its orchestration

service Amazon OpsWorks7 together with the configuration management software Chef

are used to deploy the team’s software into production. The software Nagios monitors

the cloud-deployed software system in production. Production errors are reported back to

the development team that can respond with fixes in the form of new and adapted code.

The operation team might also have to adapt the landscape build instruction files (Chef’s

so-called Cookbooks). The stable operation and maintenance of the whole deployment

pipeline lie in the responsibility of the operations team.

Measurement is the third DevOps CAMS principle. It supports continuous impro-

vement. Alt et al. (2017), report that, implementing the DevOps philosophy at T-Systems

Multimedia Solutions has lessened the conflict between required agility and speed on one

side and required reliability on the other side. Throughput times for new releases were

decreased. Decreased throughput times resulted in 75 % lower costs for customers be-

cause development and test landscapes had to be in operation in parallel for substantially

less time (Alt et al., 2017). Additionally, New Relic, Inc. (2015) name business success,

customer experience, application performance, speed and quality as categories for key

performance indicator to measure in DevOps.

Sharing is the last CAMS principle. First of all, sharing ideas, methods, tools, and

common goals within organizations cannot be taken for granted. Sharing is strongly rela-

6https://aws.amazon.com/
7https://aws.amazon.com/opsworks/

https://aws.amazon.com/
https://aws.amazon.com/opsworks/

32 An Information System Architecture for ASLPs

SOFTWARE TECHNOLOGY

 MAY/JUNE 2016 | IEEE SOFTWARE 99

need it. Its major advantage is fast
delivery cycles by integrating devel-
opment and operations.

DevOps and microservices should
be cloud-based as much as possible,
especially if the focus is on efficient
service delivery. Unlike a centrally
governed cloud solution, microser-
vices are inherently distributed. Each
delivery has dependency impacts
that must be analyzed, validated,
and considered for packaging. When
microservices are operated across
networks, the deliveries will incur
significant performance penalties that
must be accommodated with addi-
tional architectural tweaks, such as
caching layers. More complex and
critical applications with availability
and security constraints shouldn’t be
addressed entirely by a volatile cloud
delivery model.

Because microservices need Dev-
Ops, we recommend starting with
a tailored DevOps strategy. It will
have immediate value owing to bet-
ter integration across the life cy-
cle and can gradually evolve to a
microservices delivery model, if that’s
appropriate.

The DevOps Culture Shift
Vector Consulting Services has
helped several companies improve
efficiency with DevOps and con-
tinuous delivery. (For an example,
see the sidebar “A DevOps Case
Study.”) A key lesson for all these
companies has been not to under-
estimate the culture shift. All Dev-
Ops projects face four major re-
lated challenges:

• breaking complex architec-
tures and feature sets into small
chunks that can be produced
and deployed independently;

• maintaining a configuration and
build environment that provides

constant visibility of what’s de-
ployed, with which versions and
dependencies;

• introducing a purpose-built
development and production
environment derived from legacy
application life-cycle manage-
ment or product life-cycle man-
agement environments; and

• bridging the traditionally siloed
cultures of development (which
operations folk perceive as cum-
bersome and expensive because
of its thoroughness) and opera-
tions (which developers perceive
as quick and dirty).

Transitioning toward DevOps is
obviously more challenging with
legacy software, both in the IT and
embedded domains. Most case stud-
ies have involved application devel-
opment and Web environments that
migrated rather easily to DevOps be-
cause there was a single source and
thus orchestrated rollback was fea-
sible. Real-world deployed software
isn’t like that.

When embracing a DevOps cul-
ture, developers must take a full-

stack developer approach, in which
they take responsibility for the testing
and release environment. They must
master an extended skill set beyond
code knowledge, including database
administration and testing. Further-
more, as the functional silos’ bound-
aries blur, more intense collaboration
with other team members is required.

When developers embrace Dev-
Ops, testing is a critical part of
development, and the development
team performs test-driven develop-
ment and CI. In this scenario, testers
can be paired with developers, and
both can gain technical knowledge.
The quality assurance team must en-
sure automation of all test cases and
full code coverage.

From an operations perspective,
DevOps greatly affects culture and
discipline. Operations teams must
continuously connect to other func-
tions without losing control. So,
the IT operations and development
teams must closely collaborate to
achieve the continuous process pro-
moted by the DevOps team. More-
over, infrastructure monitoring and
application performance manage-

Chef
Amazon OpsWorks

AWS

Nagios

Cookbook and
app repository

Jenkins

Rake

Development
team

Commit

Notify regarding build success or failure

Monitor cloud

FIGURE 2. A DevOps architecture that uses Amazon Web Services (AWS) tools to

implement continuous delivery.
Figure 3.2: Example of a product-specific continuous deployment pipeline for DevOps

(Ebert et al., 2016).

ted to the culture of a company (cf. CAMS culture principle). Such an openness, requiring

mutual trust, is recommended for DevOps initiatives to be successful (Willis, 2010; Debois,

2011; Alt et al., 2017). Particularly defining and accepting common goals can be a challen-

ging task for development and operation teams to accomplish (Alt et al., 2017). Secondly,

sharing can be observed in the use of open source software (Andersen-Gott et al., 2012).

It is not far-fetched to say that much of the recent trends including cloud computing and

DevOps would not have been possible without open source software. Essential contri-

butions and influences of open source software include easy documentation and testing

mechanisms, a modular architecture to support distributed development efforts, an open

culture which promotes helping others and finding transparent contribution mechanisms

such as facilitated by today’s version control systems (e.g., Git in GitLab8, motivated

by GitHub9), as well as balancing centralization and decentralization (Gacek and Arief,

2004). Companies may support or provide open source software to sell complementary

services within this eco system(Andersen-Gott et al., 2012).

As the DevOps philosophy is rather unspecific, companies must find their interpre-

tation. Site reliability engineering can be understood as a specialization of DevOps. The

term was coined by Google where site reliability engineering (SRE) is applied and where

it was invented (Beyer et al., 2016). Because Google operates a successful business and

internet-based application software on a vast and distributed computing infrastructure,

Google’s established common practices influence the IT industry (Chen et al., 2009). SRE

mainly seeks to address the bespoken goal conflict that developers and operators have

(Beyer et al., 2016, p. 4). A site reliability engineer, working in the operations team, will

most often have a background in software engineering (Beyer et al., 2016, p. 5). On the

one hand, system administrators are often well experienced and capable in the lower levels

of the IT stack, mainly when supporting large IT organizations. This experience includes

knowledge of the low layers of the network stack or operating system internals (Beyer

8https://about.gitlab.com/
9https://github.com

https://about.gitlab.com/
https://github.com

Johannes Hintsch, M. Sc. 33

et al., 2016, p. 5). On the other hand, software engineers are often more likely and more

educated on how to rationalize inefficient processes or on how to automate reoccurring

tasks (Beyer et al., 2016, pp. 205-222).

Within SRE, the operations teams will define so-called error budgets. The error

budget for an IT service equals one minus the availability target for that service (Beyer

et al., 2016, p. 481). If no error occurs, the development team may launch new releases

and updates to their software. If an error occurs, releases and updates are frozen until

errors are resolved. By default, the budget will be reset monthly. For mature services

(with availability targets above 99.99 %) the budget can be bi-monthly. This error budget

gives the development team an incentive to work with the operations team to quickly

resolve issues and provide software with low bug rates. Also, site reliability engineers are

restricted to work on classical operations work (e.g., handling tickets, performing on-call

duty, or manual tasks) for a maximum of 50 % of their time. The rest of the time should

be spent on ensuring that services run stable and are operable with a high degree of

automation (Beyer et al., 2016, p. 6).

Automation is also a key component of current system architectures, such as micro-

services. System architectures are discussed in the following.

3.3.2 System architectures

A system architecture states what the system’s elements are, how they are arranged and

interrelated, what the principles of the system’s organization and design are, and how the

system shall evolve over its lifecycle (ISO/IEC/IEEE, 2011). This section roughly fol-

lows the historical evolution of monolithic software architectures, over component-based

software, service-oriented architecture, cloud computing, and finally to microservices. The

focus is on software systems. Enterprise architecture is another important field of architec-

ture. It is used to consistently align the business layers (strategy and process) facilitated

by an integration layer with the IT layers (software and technology), as discussed by Win-

ter and Fischer (2007). Although enterprise architecture is not discussed in more detail

in this section, of course, the architecture of the business has interdependencies with the

business as will become evident in the following. The structure of this section aligns with

a literature review on microservices by Chlebusch (2016).

The monolithic architecture was the fundamental concept by which early enterprise

application software was designed (Klaus et al., 2000). Enterprise application software

contains functions for data management, processing, and presentation (3-tier architecture).

In monolithic software architectures, these functions are centrally implemented with a

high degree of coupling (Fink, 2014). When systems have a certain size they become

difficult to manage due to their complexity. Adaptation or replacement of parts of the

application system is challenging, and the reuse of these parts is usually not possible

(Fink, 2014). Furthermore, an allocation of the application system to more than one

computer for concurrent execution is often not possible. Concurrent execution is required

for efficiently dealing with increased load. The client-server architecture addresses some

34 An Information System Architecture for ASLPs

of these disadvantages of monolithic architectures (Fink, 2014).

The principle of the client-server architecture is to divide the application system into

at least two subsystems (Fettke, 2016). A server subsystem offers its services over defined

protocol-based interfaces to a client subsystem. The server may react to client-initiated

requests in the order it chooses. Often, the communication between server and client is

performed network-based. The client-server architecture addresses some of the issues of

monoliths. Functions, such as data management and processing, can now be split into

subsystems, which enhances system maintainability (Rautenstrauch and Schulze, 2003,

p. 258). Furthermore, load distribution onto more than one computer is facilitated.

Application software is composed of multiple programs (Stahlknecht and Hasenkamp,

2005, p. 226). An enterprise application system following a client-server-based 3-tier

architecture decomposes its functionality into subsystems. However, also within single

programs, decomposition has been continuously researched in software engineering.

Naur (1969) identifies software decomposition as a strategy to achieve better main-

tainability of software by decomposing it into manageable pieces. Different terms and

approaches have been used for decomposable parts and decomposition itself. Naur (1969)

refers to decomposable parts as action clusters, whereas McIlroy (1969) calls them software

components. Parnas (1972) proposed the modular design by decomposing software design

into software units. Finally, Dijkstra proposed dividing software into sequential phases

and hierarchical levels (Dijkstra, 1968; Laplante et al., 2008). These principles created the

foundations for today’s efficient and effective module-based software development. Loo-

sely coupled modules or components, whose elements exhibit a high degree of cohesion

(Beck, 2002, p. 107), can be quickly adapted according to requirements without having

to implement the functionality.

Business components are specific software components that implement business functi-

ons of enterprise application systems (Turowski, 2014). Business components require addi-

tional system parts (middleware) to be executed. Such middleware includes work-flow ma-

nagement and communication systems (Turowski, 2014). Workflow management systems

support the execution and potential automation of defined business processes (Cardoso

et al., 2004). Extracting components from a formerly monolithic architecture into networ-

ked subsystems increases communication needs. Systems that handle this communication

in business component-based application systems are referred to as object request brokers

(Turowski, 2014).

Service-oriented architecture (SOA) is related to component-based architecture. Ba-

sed on a service registry, consumers can search for and use a service that a provider

publishes to the service registry (Gómez, 2012). In contrast to the complex and pro-

prietary enterprise architecture integration platforms centering around the object request

brokers, SOA should facilitate higher agility of business processes and improved reusa-

bility of software components (Romero and Vernadat, 2016). SOA is often implemented

with techniques such as the simple access protocol or enterprise service bus (Siedersleben,

2007). While SOA is usually appreciated as a technical concept, it has organizational

Johannes Hintsch, M. Sc. 35

implications (Beimborn et al., 2012). If, for example, a company has adopted SOA to

design its application system landscape, IT outsourcing is facilitated (Beimborn et al.,

2012). Organizing a business architecture in a service-oriented fashion is also a current

theme of service science (Alter, 2011).

Fuelled by the increasing demand for computing power, cloud computing became

famous in 2006 (Yang and Tate, 2012). “[Cloud computing] promises to provide on-

demand computing power with quick implementation, low maintenance, fewer IT staff,

and consequently lower cost” (Yang and Tate, 2012). The essential characteristics of

services offered via cloud computing are on-demand self-service, broad network access,

resource pooling, rapid elasticity, and measured service (Mell and Grance, 2011).

Resource pooling is required to achieve lower costs. Consider a company that requires

large computational capacities only at particular times in the year. Acquiring the needed

computing infrastructure would be costly as compared to procuring those services from

an IaaS provider. Resources that are pooled include networks, servers, storage, but also

multi-tenant software in PaaS and SaaS offerings (Armbrust et al., 2010).

Virtualization is of central importance to achieve resource pooling (Armbrust et al.,

2010). Different forms of virtualization exist. Common to all, an additional abstraction

layer is put between the physical computers and the application software. Full virtuali-

zation, paravirtualization, processor-supported virtualization, and operating system level

virtualization (container-based virtualization) can be differentiated (Hoffmann, 2010). In

full virtualization, the virtual machine that is run on a hypervisor exactly resembles real

hardware (Hoffmann, 2010). The guest operating system does not know that it is running

on virtualized hardware and, consequently, does not explicitly have to be prepared. The

hypervisor runs directly on hardware or is running as a program within a deployed ope-

rating system. Paravirtualization addresses the performance issues of full virtualization

(Hoffmann, 2010). Full virtualization results in a substantial overhead because of com-

plete hardware replication. In paravirtualization, the guest operating system has to be

modified. That way specific tasks of the guest can be delegated directly to the hypervisor

where they can be executed without suffering from the overhead of virtualization. In

processor-supported virtualization, the processor takes over tasks of the hypervisor (Hoff-

mann, 2010). Compared to paravirtualization the advantage is that the guest operating

system does not have to be modified.

In operating system level virtualization or container-based virtualization, containers

are not as entirely separated from one another as is the case for virtual machines. Contai-

ners share the kernel of the operating system on which they are executed (Hoffmann, 2010).

Separation between containers is achieved by using kernel features that carve off a part of

the file system (chroot), a contained process space (namespaces), and isolated (cgroups)

usage of central processing units (CPU) and memory, as well as isolated disk and net-

work input/output (Pahl, 2015). The software Docker10, which supports container-based

virtualization, has received particular attention recently (Bernstein, 2014b). Based on a

10https://www.docker.com/

https://www.docker.com/

36 An Information System Architecture for ASLPs

layered file system, customized containers containing project-specific application software

can be built from various container base images that are available in public repositories

(Pahl, 2015). Compared to full virtual machines, containers exhibit faster start times and

a reduced operational overhead (Soltesz et al., 2007; Mastelic et al., 2016). Their light-

weight nature makes them particularly appealing for the cloud computing characteristic

of rapid elasticity. New containers can be spawned almost instantly and fine-grained in

reaction to quickly changing load scenarios (Bernstein, 2014b; Pahl, 2015).

Automation is key in cloud computing and a requirement for achieving on-demand

self-service and rapid elasticity. Broadband internet access is available pervasively in

developed countries, with coverage of above 99 % in Europe (European Commission,

2015). Handling the requests of a large number of users requires sophisticated strategies

for load balancing at the side of the service provider (Beyer et al., 2016, pp. 223–246).

Figure 3.1 shows the different service models of cloud computing (IaaS, PaaS, and SaaS).

Self-service can mean that customers use web-frontends of the service, for example in SaaS,

but particularly for IaaS and PaaS, the use of application programming interfaces (API)

is closely associated with cloud computing (Fehling et al., 2014, p. 4). If an IaaS offering

is used to substitute an organization’s computing capabilities, following the automation

principle, then manually starting and stopping remote virtual machines is infeasible. APIs

are used for this purpose.

As cloud computing is considered a hype by some (Leymann et al., 2016), resear-

chers discuss what characterizes software explicitly as cloud-native (Leymann et al., 2016;

Kratzke and Quint, 2017). The current architectural style of microservices adheres to the

requirements for cloud-nativity (Kratzke and Quint, 2017). Leymann et al. (2016) point

out that the core principles of microservice architectures are not new, but were established

in SOA. However, microservices add the independent deployability of each service through

a deployment pipeline to their architecture concept (Leymann et al., 2016).

Lewis and Fowler (2014) employ nine characteristics to define microservice architec-

tures: (1) componentization via services, (2) organized around business capabilities, (3)

products not projects, (4) smart endpoints and dumb pipes, (5) decentralized governance,

(6) decentralized data management, (7) infrastructure automation, (8) design for failure,

and (9) evolutionary design. Based on Lewis’ and Fowler’s remarks (2014), they will be

described in the following.

Microservices are used to build distributed software. (1) They are small, independent

services that act like software components. Such a component is autonomous, replaceable,

and extensible. (2) Whereas in monolith-based architecture development teams were often

organized around layers such as database and application software, this should not be the

case for microservices. There, teams should be assembled around business capabilities. For

each business capability, a full stack service is implemented and includes “user-interface,

persistent storage, and any external collaborations” (Lewis and Fowler, 2014). This or-

ganization achieves a high degree of cohesion within each service. (3) Each team takes

responsibility for their services. If a team has built the service, it is also responsible to run

Johannes Hintsch, M. Sc. 37

it. Usually, a project has a fixed ending date. Then, developers often move on to the next

project. The third characteristic shall keep the teams feeling a sense of responsibility for

their services, which support the respective business capability. Productization has also

been suggested and implemented for IT service provisioning to facilitate more transparent

and market-like provider-consumer relationships (Zarnekow and Brenner, 2003; Löffler and

Reinshagen, 2014).

Microservices, in contrast to previous architecture styles like component-oriented sy-

stem architectures, (4) use simple mechanisms for communication. Often, representational

state transfer (REST) and JavaScript object notation (JSON) are used for communication

(Kratzke and Quint, 2017). In RESTful communication, the state is transferred each time

a service is called, which makes it easier to scale out (add nodes) the service (Fehling

et al., 2014, pp. 171–174). JSON is a simple markup language without schemas for ve-

rification. It can be seen as the smallest common denominator that everybody can agree

upon (Koukis et al., 2013).

Monoliths required consistent use of software programming languages and libraries.

(5) For microservice architectures, it is recommended that teams select programming

languages and tools by the project’s specific requirements as well as the teams’ prefe-

rence. (6) Decentralized data management becomes a necessity when each service is a

full stack implementation including its own database (cf. second characteristic). Maintai-

ning enterprise-wide data consistency, therefore, is a problem that developers face when

developing microservices. However, Lewis and Fowler (2014) state that the resulting dra-

wbacks such as inconsistency and required time for updates are accepted in favor of more

business agility. (7) Operations automation approaches are required to operate the hete-

rogeneous software stacks that result from the fifth characteristic. Operations automation

approaches (Wettinger et al., 2016) include the different techniques of virtualization and

will be further discussed in the following section. Furthermore, rapid service elasticity re-

quires automated procedures to react quickly to changing load situations (Owens, 2010).

Also, automated deployment pipelines with automated testing and deployment facilitate

the provisioning of new features for a service. (8) Monitoring is as necessary as ever

when considering the resulting large infrastructures. At Google, for example, every ser-

ver program has a built-in simple web server that provides a program’s health statistics.

Monitoring data can easily be collected from those web servers (Beyer et al., 2016, p. 19).

(9) When requirements change, services need to be updated. Updating software while

maintaining architectural consistency can be challenging. Here, the previously discussed

component-oriented software engineering that modularizes software can help. However, in

some cases replacing components rather than refining them is advocated.

This section focused on the architecture of systems and how to engineer them. The

next section will shed light on how to automate the operation of the resulting system

landscapes.

38 An Information System Architecture for ASLPs

3.4 Operation of application system landscapes

ITIL defines configuration management as “the process responsible for ensuring that the

assets required to deliver services are properly controlled, and that accurate and reliable

information about those assets is available when and where it is needed. This informa-

tion includes details of how the assets have been configured and the relationships between

assets.” (Rance, 2011, p. 328). This definition also addresses some of the aspects why confi-

guration management software is used (e.g., reliable information about how an application

software is configured). However, ITIL’s common practices for configuration management

have a strong focus on managing the configuration items of a service regarding accounting

for them in a configuration management database. Configuration management software

focuses on how to automatically configure a given number of hosts based on a common

configuration specification. To control the sequence of configuration and describe which

nodes get what configuration, orchestration software is used. Both types of software are

fundamental building blocks of the ISAA. They are discussed in the following two sections.

3.4.1 Configuration management software

Configuration management software has played a crucial role in distributed computing

concepts such as grid computing (Fischer et al., 2014). Automation is required in dom-

ains other than grid computing as well to cope with the growing numbers of computers.

Configuration management software is used to describe and invoke the desired configura-

tion of the software stack of specified computers. Concepts such as modularization and

parametrization are used to balance standardization of default configuration specifications

against specific configuration necessities of individual computers. In terms of recent trends

such as DevOps or microservice architectures, configuration management software is used

for automating the configuration in the various environments (development, testing, pro-

duction) of continuous deployment pipelines (Ebert et al., 2016). This section discusses

configuration management software aligned with the results of a structured literature re-

view conducted by Hintsch et al. (2016a).

Various open source and proprietary products for configuration management exist

(Delaet et al., 2010). However, software for configuration management, as discussed in

this thesis, is not the only means for managing the configuration of software systems.

Arcangeli et al. (2015) review work on the automatic deployment of distributed software

systems. They address component-oriented software engineering and review technologies

such as OSGi that can be used to build software from various interfaced modules (Hall

et al., 2011).

Software product lines employ standardization and mass customization (Apel et al.,

2013, p. 4) to the efficient production of shippable software programs. The scope of

software product lines particularly lies on resource-constrained domains such as embedded

computing (Apel et al., 2013, p. 7). Features of a product line, such as transaction

management for databases, can be included or excluded as required (Apel et al., 2013, p.

Johannes Hintsch, M. Sc. 39

Repository

sysadmin input Translation agent

Managed device

Deployment agent

Managed device

Deployment agent

Managed device

Deployment agent

profile profile profile

operator

Figure 1: A conceptual architecture of system configuration tool.

2. Instance distribution rules: Instance distribution

rules specify the distribution of instances in the net-

work. We define an instance as a unit of configura-

tion specification that can be decomposed in a set of

parameters. Examples of instances are mail servers,

DNS clients, firewalls and web servers. A web

server, for example, has parameters for expressing

its port, virtual hosts and supported scripting lan-

guages. In Figure 2, the instance distribution rule

prescribes the number of mail servers that need to

be activated in an infrastructure. The need for such

a language is explicited in [3] and [2].

3. Instance configurations: At the level of instance

configurations, each instance is an implementation

independent representation of a configuration. An

example of a tool at this level is Firmato [6]. Fir-

mato allows modeling firewall configurations inde-

pendent from the implementation software used.

4. Implementation dependent instances The level of

implementation dependent instances specifies the

required configuration in more detail. It describes

the configuration specification in terms of the con-

tents of software configuration files. In the example

in Figure 2 a sendmail.cf file is used to describe the

configuration of mail server instances.

5. Configuration files: At the level of configuration

files, complete configuration files are mapped on a

device or set of devices. In contrast with the pre-

vious level, this level has no knowledge of the con-

tents of a configuration file.

6. Bit-configurations: At the level of Bit-

configurations, disk images or diffs between

disk images are mapped to a device or set of

devices. This is the lowest level of configuration

specification. Bit-level specifications have no

knowledge of the contents of configuration files or

the files itself. Examples of tools that operate on

this level are imaging systems like Partimage [21],

g4u [9] and Norton Ghost [24].

Figure 2 shows the six abstraction levels for system

configuration, illustrated with an email setup. The illus-

tration in Figure 2 is derived from an example discussed

in [3]. The different abstraction levels are tied to the con-

text of system configuration. In the context of policy lan-

guages, the classification of policy languages at different

levels of abstraction is often done by distinguishing be-

tween high-level and low-level policies [16,25]. The dis-

tinction of what exactly is a high-level and low-level pol-

icy language is rather vague. In many cases, high-level

policies are associated with the level that we call end-to-

end requirements, while low-level policies are associated

with the implementation dependent instances level. We

believe that a classification tied to the context of system

configuration gives a better insight in the different ab-

straction levels used by system configuration tools.

In conclusion, a system configuration tool automates

the deployment of configuration specifications. At the

level of bit-configurations, deployment is simply copying

bit-sequences to disks, while deploying configurations

specified as end-to-end requirements is a much more

complex process.

2.1.3 Modularization mechanisms

One of the main reason system administrators want to

automate the configuration of their devices is to avoid

repetitive tasks. Repetitive tasks are not cost efficient.

Moreover, they raise the chances of introducing errors.

Repetitive tasks exist in a computer infrastructure be-

cause there are large parts of the configuration that are

shared between a subset (or multiple overlapping sub-

sets) of devices ([3]). For example, devices need the

same DNS client configuration, authentication mecha-

nism, shared file systems, . . . A system configuration tool

3

Figure 3.3: Managing the configuration of software on different devices (Delaet et al.,
2010).

88). Based on selectable sets of features, a software can be configured, and a shippable

software program is generated (Apel et al., 2013, p. 20). Component-oriented software

engineering and software product lines both address the development of new software.

Configuration management software, in contrast, deploys and configures software on one

or more computers and is responsible for the configuration, usually for as long as the

computer is running.

Delaet et al. (2010) describe a generic architecture of configuration management soft-

ware that is depicted in Figure 3.3. The administrator is provided with an interface,

which is used to specify the configuration of the managed devices. These specifications

are stored in a repository. Device-specific profiles are generated from generic configura-

tion specifications. The deployment agents of the managed devices configure the device

as specified.

The first publication on configuration management software appeared in 1994 (Hintsch

et al., 2016a). In this paper, Anderson (1994) presented a software to validate and generate

configurations for the computers of the computer science department of the University of

Edinburgh. Since then, numerous other works have been published on and related to the

subject. Hintsch et al. (2016a) provide a categorization scheme for research related to

configuration management software. Representative research is discussed below.

Various papers addressed, not surprisingly, cluster and grid computing because large

numbers of servers need to be managed. For example, Ballestrero et al. (2014) present an

approach where configuration management software is used for simulation experiments at

the European Organization for Nuclear Research. In addition, configuration management

is an essential area for network management, for example, regarding the remote manage-

ment of network elements’ firmware (Hori et al., 2007). Finally, researchers have presented

their work in educational settings, for example, in managing storage systems of libraries

(Pop et al., 2014).

Most research interest has been attracted by how the task of configuration is carried

out. Here, three sub-categories can be differentiated.

40 An Information System Architecture for ASLPs

The first subcategory includes papers that discuss the different techniques of speci-

fying the configuration. Talwar et al. (2005) differentiates script-based, language-based,

and model-based techniques. For small node numbers, manual or script-based confi-

guration might be feasible. For complex landscapes, the abstraction mechanisms of

language- and model-based configuration management software facilitates management

(Talwar et al., 2005). Configuration management languages are often DSLs and someti-

mes general purpose languages. Delaet et al. (2010) argue that declarative approaches

are superior to imperative approaches because they are more stable. Model-based techni-

ques introduce additional abstraction elements as compared to language-based techniques

(Talwar et al., 2005).

The second subcategory includes works that focus on how configuration specifications

can be created. For example, Menzel et al. (2013) present an approach to mine virtual

machine image repositories for configuration information. This information is transfor-

med into executable configuration specifications. Herden (2013) proposed model-driven

configuration management where configuration specifications are generated from system

landscape diagrams. Similarly, the DSL by Frank et al. (2009) and Kaczmarek-Heß and

de Kinderen (2017) can be used to model IT system landscapes. However, they make no

statements as to how landscapes can be configured based on the models specified in the

DSL.

The third subcategory describes approaches to high-level configuration specification

that are often model-based. For example, Wettinger et al. (2013) describe the Topology

and Orchestration Specification for Cloud Applications (TOSCA) and how it can be used

with language-based configuration management. TOSCA will further be described in the

next section.

Non-functional properties of configuration management software have also attracted

various researchers. For example, Vanbrabant et al. (2009) has integrated fine-grained

access control into configuration management software (security). Intended or uninten-

ded misconfiguration can have disastrous consequences in large sites. The correctness of

configuration specifications is addressed by Ruscio and Pelliccione (2014) who proposes

to assist administrators by simulating the upgrade of complex systems to predict failures.

For administrators without a background in software engineering, configuration specifica-

tion can be tricky. As an example, Kandogan et al. (2005) proposes a spreadsheet-based

framework for system administrators to develop configuration scripts (usability).

Reliability is another non-functional property of configuration management software.

Various factors influence the state of a computer’s configuration. Programs and humans

can change the configuration, and due to software bugs system stability can be impeded.

The declarative nature of most current configuration management software addresses this

problem. When a certain state is declared the configuration management software inspects

the as-is state of the system and converges the configuration towards the to-be state

(Nielsen et al., 2011; Hanappi et al., 2016). To ensure that systems are configured as

specified, the concept of idempotency is introduced. It states that no matter how often a

Johannes Hintsch, M. Sc. 41

configuration specification is applied it should always converge to the same state (Hanappi

et al., 2016). The fulfillment of this principle is not always trivial, however. Issues may

arise from unavailable network connections (Hanappi et al., 2016). Also, implementing

idempotent configuration specifications, for example, for the creation of databases can be

challenging, but possible (Wettinger et al., 2014). Addressing mostly the network issue,

Zhu et al. (2015) suggest to offline preconfigure virtual machine images and only limitedly

configure them at runtime. This approach minimizes problems that result from network

unavailability in which cases required software packages cannot be downloaded.

An important aspect of operations automation is orchestration, which will be discus-

sed in the following section.

3.4.2 Orchestration software

Orchestration software, as discussed in this thesis, is responsible for instantiating elements

such as virtual machines or containers, virtual storage, and network elements. It determi-

nes the order of instantiation, configures or invokes configuration of the elements, and can

transfer output that results from instantiating and configuring one element as input for

instantiating and configuring other elements (OASIS, 2015). Orchestration software can

come in the form of standalone orchestration engines as is the case for OpenTOSCA11.

For the IaaS software OpenStack, which is used for the prototypical implementation of

the ISAA, the orchestration engine Heat12 is integrated as a component into an Open-

Stack installation. For public IaaS offerings, such as Amazon Web Services, orchestration

services are available as well.

Several authors present architectures for automating the provisioning of application

services. Kirschnick et al. (2010) use a custom-developed tool landscape to show that

automated provisioning of cloud services is possible. They focus only on provisioning.

Billing or contractual provisions are not considered. Their approach is centered around

service templates. These service templates define how the services are structured using

a DSL. End-users of an application service can customize these templates to align the

application service with their requirements. As points for future work, Kirschnick et al.

(2010) list “self-management capabilities such as fault-tolerant cloud services, service level

agreement management, and quality of service assurance”. Glohr et al. (2014) provide a

draft of an architecture that offers application service production from sales to operation.

For deployment, they use virtualization and a script-based installation of SAP software.

Further details are not shared. Glohr et al. (2014) consider “[...] adjusting products,

organizations, processes, and ERP systems” as the primary challenge. Mastelic et al.

(2016) propose the use of a model-driven approach to deploy application services. Their

meta-model consists of three layers. The top layer includes the service’s requirements and

uses case definition, the platform-independent definition of the service structure, and the

platform dependent specification including the service’s implementation details. Prede-

11http://www.opentosca.org
12https://docs.openstack.org/heat/

http://www.opentosca.org
https://docs.openstack.org/heat/

42 An Information System Architecture for ASLPs

fined templates of are required for model transformations. Their proposed architecture

includes components for central management, which includes the orchestration engine, for

monitoring, a database, and for managing the services. They present a, mostly custom

developed, prototype. Their prototype has interfaces to support Docker containers and

full infrastructure virtualization with OpenNebula13.

Heat (OpenStack Foundation, 2012) has gained some dissemination as the popular

OpenStack’s default orchestration software. OpenStack is described as a de-facto standard

IaaS (Nelson et al., 2014). Heat templates try to be, but are not, fully compatible with

the proprietary templates of Amazon’s orchestration service. They focus on infrastructure

orchestration. All elements of a service that can be managed in OpenStack can be defined

in Heat templates and consequently be orchestrated with Heat. These elements include

virtual machines, their images, volumes for storage, network elements such as routers or

containers. In order to automatically scale application services, policies can be defined.

While Heat focuses on the orchestration of infrastructure, it can trigger the configuration

of software with configuration management software products.

TOSCA focuses less on infrastructure and more on the application-side of the service

(Wettinger et al., 2016). Its service templates include topology templates that define the

service landscape. The basic elements for defining landscapes in TOSCA are nodes and

relationships. A node type can represent a software product or a virtual machine in a

specific configuration. A relationship type could be hosted on connecting software and

infrastructure. However, relationships between software can also be modeled. In any case,

all types have to be separately defined. Management plans in TOSCA are used to describe

how and in what order a deployment or change of the landscape should be performed. So-

called deployment artifacts are configuration management specifications that perform the

actual configuration tasks on each host of the service landscape. TOSCA is not associated

with any infrastructure software. Some research-focused implementations (Binz et al.,

2014), one proprietary service14, and prototypical mappings to Heat (OpenStack Foun-

dation, 2015) exist. Lenhard (2016) addresses standards such as TOSCA and constraints

their versatility by stating that, even though the standards are comprehensively defined,

implementations are often not complete.

While Heat and TOSCA can manage containers, Kubernetes15 was designed explicitly

for container orchestration and has evolved as somewhat of an industry standard. It was

created by Google and is supported by other large players in the industry (Bernstein,

2014b). Kubernetes manages Docker containers and helps to assign raw resources such

as memory and CPU cores to them. In Docker, inter-container communication is done

via network ports, not individual addresses. Consequently, managing communication for a

large number of containers is complex. Kubernetes introduces an additional abstract layer:

pods. One pod group several containers. Each pod has its own network address, thereby

organizing network communication by additional hierarchization (Bernstein, 2014b).

13https://opennebula.org/
14https://cloudify.co/
15https://kubernetes.io/

https://opennebula.org/
https://cloudify.co/
https://kubernetes.io/

Johannes Hintsch, M. Sc. 43

This was the last section describing the research background for the development of

the ISAA. Based on the presented work, the next section will elaborate on the research

gap.

3.5 Summary and research gap

The positioning in the literature and research gap will be highlighted in the following

manner. First, the presented literature is summarized. Second, the positioning in the

literature and research gap is elaborated on. The summary focuses on the general research

background. Three sets of directly related work are defined, which are not part of the

summary but are summarized and discussed to elaborate on the research gap in section

3.5.2.

3.5.1 Summary

Customers source IT services to reduce costs, concentrate on core capabilities, access the

provider’s technical excellence or specific domain knowledge. They are concerned about

the security and privacy of their data and require service level agreements to guarantee

business continuity. Customers require documented mechanisms in case of provider fall

out. Agility is a reason for turning to cloud computing, although customers have to

accept standardized services. Established companies that offer cloud services with good

customer support can be solidly competitive (cf. section 3.1.2). (Riemer and Ahlemann,

2001; Currie and Seltsikas, 2001; Lacity et al., 2010; Kappelman et al., 2014; Schneider

and Sunyaev, 2016; Labes et al., 2017)

IT service providers saw sourcing, automation, process standardization, and modu-

larization as areas of improvement in 2011. Cloud computing adoption is increasing, but

not every company (less than 50 %) uses cloud computing yet. ITIL-based IT service ma-

nagement is actively practiced in the transition and operation processes. ITIL processes

of other stages (strategy, design, and continuous improvement) are following slowly (cf.

sections 3.1.3 and 3.1.4). (Becker et al., 2011; Hsu et al., 2014; Marrone et al., 2014; Ng

et al., 2017)

Enterprise management systems offer various benefits, but for successful implemen-

tation, top management support, training, often substantial outside consulting, and good

communication are necessary. Reference models align organizational, process, data, and

functional views of enterprise management system architecture. It is an unresolved rese-

arch problem how to explicate the general validity of a reference model. Reference models

are, however, applied with utility in practice. Computer-integrated manufacturing can

achieve efficient production of just-in-time and customized products (cf. section 3.2.2).

(Ngai et al., 2008; Gronau, 2010; Momoh et al., 2010; Scheer, 1997; Becker and Schütte,

2004; Fettke and vom Brocke, 2016; Harrison and van Hoek, 2008)

Insufficient empirical evidence is available on how application system landscapes of

IT service providers are structured or what systems they are composed of. For instance,

44 An Information System Architecture for ASLPs

Botta-Genoulaz and Millet study several service companies, but among the companies

related to IT service providers, are only a software company, a bank, and a financial service

provider. On a high architectural level, Wittgreffe et al. present the system landscape at

British Telecom (cf. section 3.2.3). (Botta-Genoulaz and Millet, 2006; Wittgreffe et al.,

2006)

Several meta-models related to service science and IT services in particular have

been created. They include a very general but comprehensive service science meta-model,

process-meta-models for ITSM, and a more specific IT service production meta-model by

Ebert et al. (cf. section 3.2.4). (Ebert et al., 2007; Goeken and Alter, 2009; Brenner et al.,

2009; Valiente et al., 2012; Alter, 2011; Hintsch and Turowski, 2013)

To define and delineate the philosophical trend of fostering closer cooperation bet-

ween developers and administrators (DevOps), the principles culture, automation, me-

asurement, and sharing (CAMS) are postulated. DevOps’ advocates not only cross-

departmental collaboration between development and operations but also the close in-

tegration of the business into the DevOps process as well as product-ownership as a shift

in culture. Automation is the second principle. A continuous deployment pipeline, cen-

tered around repeatable application system landscapes, facilitated through configuration

management software, and automated testing, is central to automation. If you can’t me-

asure it, you can’t improve it : key performance indicators include throughput time but

also indicators in the categories of business success, customer experience, application per-

formance, speed, and quality. Sharing, the last principle, is also manifested in open source

software. Such licensed software is the basis for a lot of DevOps software. Google has

sharpened the DevOps concept according to its necessities. In particular, site reliability

engineers are recommended to have educational backgrounds in software engineering as

well as sound low-level administrator knowledge. The goal for operations is a very high

degree of automation. High automation and fruitful collaboration between developers

and administrators are incentivized by simple, and apparently effective, key performance

indicators (KPI). System architectures evolved from monolithic architectures to more com-

ponentized architectures. Microservices are a recently advocated architecture style that

builds upon previous architectures (cf. section 29). (Lewis and Fowler, 2014; Gacek and

Arief, 2004; Chen et al., 2009; Willis, 2010; Andersen-Gott et al., 2012; Alt et al., 2017;

Ebert et al., 2016; Beyer et al., 2016)

Automation by administrators is not new. With the move away from mainframes to

personal computers and large numbers of standardized (commodity) server hardware, the

need to consistently manage and automatically configure the software stack on a large num-

ber of computers has grown. Domains of application include grid computing, networking

management, or education. Research papers started to be published in 1994. However,

particularly with trends of DevOps, deployment pipelines and microservice architectures,

configuration management software has received wide publicity. Configuration manage-

ment software takes device-independent configuration specifications from a repository and

makes agents configure their specific devices. Research on configuration management

Johannes Hintsch, M. Sc. 45

software mainly includes identifying ways of how to best specify configuration and on

non-functional properties of configuration management (cf. section 3.3.2). (Delaet et al.,

2010; Herden, 2013; Wettinger et al., 2013; Hintsch et al., 2016a; Wettinger et al., 2016)

Three sets of related work are directly related to the contribution of the thesis. They

were discussed in sections 3.1.3, 3.2.5, and 3.4.2. The research gap, which the ISAA

addresses, is defined in the next section against those sets of related work.

3.5.2 Research gap

The research goal of this thesis is to increase the efficiency of ASLPs’ application ser-

vice production through standardization, automation, and modularization by creating the

ISAA. Two hypotheses address the attempt to adopt practices from manufacturing in

regards to these industrialization principles. Computer-integrated manufacturing is one

of these practices. The first hypothesis is that dominant parts-based product design can

be established for ASLPs. These designs are based on software for different operations

automation approaches, such as configuration management software, container-based vir-

tualization software, IaaS software, and orchestration software. Because it is not clear

which OAA software is most suitable for the ISAA, RQ3 is formulated: What operati-

ons automation approach is suitable for constructing the information system architecture?

RQ3 is answered in section 4.3.

The second hypothesis is that ASLPs can produce their application services model

and component based. The production process should be automated. RQ1 is posed to

understand what systems support the IT service production process: What do application

system landscapes of IT service providers look like today? This question has not been

sufficiently addressed by previous literature. RQ2 queries for the requirements of the

ISAA. Three ASLPs are studied in more detail, and the requirements are derived in

section 4.2 to answer RQ2. The literature on success factors of IT outsourcing contributes

to these requirements.

Three sets of work are directly related to this thesis (related work). Here, they are

called IT4IT, industrial methods for IT service production, and orchestration software.

These sets are compared to the thesis in Figure 3.4.

IT4IT is primarily aimed at vendors of IT service management software, the DevOps-

centric IT4IT provides a comprehensive, but high-level view of an ERP for IT. Primary

and secondary business functions of IT companies are differentiated and aligned with a

functional component architecture of an envisioned ERP for IT. IT4IT is a standard by

the Open Group (cf. section 3.1.3). (The Open Group, 2017)

Industrial methods for IT service production include work on PPC and variant ma-

nagement methods. These have been suggested to address IT service provisioning, but

the capabilities of today’s software and service offerings for IaaS are not well reflected.

Several works align with Zarnekow’s framework and share a similar data model for an

ERP implementation to support industrialized IT service production. In the ERP data

model, hosts are individually represented as equipment and the concept places deployment

46 An Information System Architecture for ASLPs

Paradigm

Target users

Considered application
systems

Addressed service life-
cycle stages

Concepts

Degree of technical detail

Degree of automation

Degree of detail for
organizational integration

Research scope

Artifact characteristics

Software Vendor

Information systems
behavioral science

Information systems
design science

Enterprise management
systems

Manufacturing-motivated IT
service production

High Low

High Low

ITSP w. personal
service provisioning

ITSP w. industrial
service provisioning

IT service management
systems

IT service production
systems

DevOps-enabling architecture of ASL
for IT companies

Low

Medium

Medium

Medium

Strategy Design Transition Operation
Continuous

improvement

Applied computer
science

Industry common
practice / standard

Cloud service
orchestration

Science

High

Paradigm

Target users

Considered application systems

Addressed service life-cycle
stages

Concepts

Degree of technical detail

Degree of automation

Degree of detail for
organizational integration

Research scope

Artifact characteristics

Software Vendor

Information systems
behavioral science

Information systems
design science

Enterprise management systems

Manufacturing-motivated IT
service production

High Low

High Low

ITSP w. personal service
provisioning

ITSP w. industrial service
provisioning

IT service management systems IT service production systems

DevOps-enabling architecture of ASL for IT
companies

Low

Medium

Medium

Medium

Strategy Design Transition Operation
Continuous

improvement

Applied computer
science

Industry common
practice / standard

Cloud service
orchestration

Science

High

Paradigm

Target users

Considered application systems

Addressed service life-cycle
stages

Concepts

Degree of technical detail

Degree of automation

Degree of detail for
organizational integration

Research scope

Artifact characteristics

Software Vendor

Information systems
behavioral science

Information systems
design science

Enterprise management systems

Manufacturing-motivated IT
service production

High Low

High Low

ITSP w. personal service
provisioning

ITSP w. industrial service
provisioning

IT service management systems IT service production systems

DevOps-enabling architecture of ASL for IT
companies

Low

Medium

Medium

Medium

Strategy Design Transition Operation
Continuous

improvement

Applied computer
science

Industry common
practice / standard

Cloud service
orchestration

Science

High

Paradigm

Target users

Considered application systems

Addressed service life-cycle
stages

Concepts

Degree of technical detail

Degree of automation

Degree of detail for
organizational integration

Research scope

Artifact characteristics

Software Vendor

Information systems
behavioral science

Information systems
design science

Enterprise management systems

Manufacturing-motivated IT
service production

High Low

High Low

ITSP w. personal service
provisioning

ITSP w. industrial service
provisioning

IT service management systems IT service production systems

DevOps-enabling architecture of ASL for IT
companies

Low

Medium

Medium

Medium

Strategy Design Transition Operation
Continuous

improvement

Applied computer
science

Industry common
practice / standard

Cloud service
orchestration

Science

High

Paradigm

Target users

Considered application systems

Addressed service life-cycle
stages

Concepts

Degree of technical detail

Degree of automation

Degree of detail for
organizational integration

Research scope

Artifact characteristics

Software Vendor

Information systems
behavioral science

Information systems
design science

Enterprise management systems

Manufacturing-motivated IT
service production

High Low

High Low

ITSP w. personal service
provisioning

ITSP w. industrial service
provisioning

IT service management systems IT service production systems

DevOps-enabling architecture of ASL for IT
companies

Low

Medium

Medium

Medium

Strategy Design Transition Operation
Continuous

improvement

Applied computer
science

Industry common
practice / standard

Cloud service
orchestration

Science

High

Information system architecture for ASLPs

Orchestration softwareIT4IT

Industrial methods for IT service production

Figure 3.4: Morphological box that highlights the research gap addressed in this thesis.

Johannes Hintsch, M. Sc. 47

and operation instructions of services in routings. Manufacturing execution functionality

and improvement of automation are suggested for future work (cf. section 3.2.5). (Le-

brecht, 1991; Zarnekow, 2007; Pinnow, 2009; Ebert, 2009; Vogedes, 2011; Dudek et al.,

2012; Pilgram and Vogedes, 2012; Hintsch, 2013)

Orchestration software triggers the instantiation of elements such as virtual machines

or containers, virtual storage, and network. The software determines the order of instan-

tiation and configures or invokes configuration of the elements. It can use the output of

instantiating and configuring one element as input for instantiating and configuring other

elements. Research prototypes have been documented since 2010, but proprietary and

standards-based open source products are available as well. Kubernetes is the de-facto

standard for container orchestration and introduces an additional abstraction layer for

management (cf. section 3.4.2). (Kirschnick et al., 2010; Bernstein, 2014b; Binz et al.,

2014; Glohr et al., 2014; OASIS, 2015; Mastelic et al., 2016; OpenStack Foundation, 2012)

Industrial methods for IT service production and ISAA share the same research pa-

radigm. Orchestration software is researched primarily in applied computer science, while

IT4IT is an industry-driven standard. Both, ISAA and the industrial methods for IT ser-

vice production share manufacturing-motivated IT service production. However, with the

ISAA’s focus on computer-integrated service production and consideration of cloud service

orchestration approaches it sets a different focus. This different focus has consequences

for the data model of the ISAA’s architecture as well as for its process architecture.

The ISAA can be used to develop software in an agile and DevOps aligned style.

Although, the focus lies more on the construction of application system landscapes from

existing application software than on the development of new software. Application soft-

ware development will be considered. However, the focus instead lies on the operations

side: how to efficiently create the configuration and orchestration specifications necessary

to operate complex landscapes.

Application software can be developed in-house or sourced in the case of the ISAA.

The ISAA and the three sets of related work also slightly differ with respect to their target

users. All address IT service providers with industrial service provisioning (internal and

external). Specifically, TOSCA and IT4IT address software vendors that can use these

standards to develop software products. In IT4IT, architecture levels four and five are

specifically reserved for this purpose. Although IT4IT also should be considered by the

scientific community, the works from the other two sets and the ISAA specifically address

a scientific audience.

The characteristics of the sets of related work, compared to the ISAA will be described

in more detail in the following. The ITIL-defined service lifecycle stages transition and

operation are considered by all sets of related work and the ISAA, in the sense that

deployment and operation of the service are addressed. IT4IT is aligned with ITIL and

consequently covers the full lifecycle. The ISAA includes financial management and the

provisions to design new services, which is why the ISAA is marked to address these stages

as well. All address continuous improvement, except orchestration software.

48 An Information System Architecture for ASLPs

The distinction of an IT service providers’ ASL into enterprise management, IT service

management, and IT service production systems is a result of the research conducted

to answer RQ1 (Hintsch et al., 2016b; section 4.1). While the orchestration software

addresses IT service production systems, only the ISAA integrates these systems with

the other two types. Also, IT4IT takes a different approach than the ISAA. It focuses on

abstract functional components, whereas the ISAA is based on actual application software

products that are used by current companies. Industrial methods for IT service production

focuses on management methods for supporting IT service production, but does not focus

on automation, although automation is seen as an area of improvement in the debate on

the industrialization of IT. The degree of technical detail is high for the ISAA as compared

to IT4IT and industrial methods for IT service production. ISAA contributes to the idea

of using industrial methods for IT service production, but incorporates a higher degree of

automation, which changes the overall concept.

Regarding Hypothesis 2, the ISAA tests the limits of how ASLPs can produce their

application services model and component-based as well as automatically. Therefore, a

high level of detail is necessary. IT4IT only covers overview levels and has not yet defined

more detailed scenarios. Compared to orchestration software, the ISAA attempts a high

degree of organizational integration (e.g., regarding financial management). While in

DevOps technical measurements are frequently discussed, business success is advocated

by one source (New Relic, Inc., 2015). The ISAA, using its integrated approach, attempts

to provide the possibility for measuring business success on a fine-grained level that is

relevant to operations.

The next section will address the research questions.

Johannes Hintsch, M. Sc. 49

4 Preliminary investigations

The preliminary investigations presented here substantiate the construction of the ISAA.

In section 4.1, the status-quo of IT service providers’ application of system landscapes

is described (RQ1). A previously published conference paper (Hintsch et al., 2016b) is

the primary basis for the section. Section 4.2 derives requirements that are used for the

construction of the ISAA (RQ2) from data of three selected cases. Lastly, in section 4.3,

different sets of suitable operations automation technology are compared. Subsequently,

one is selected based on its suitability for constructing the ISAA (RQ3).

4.1 Application system landscapes of IT service providers

When constructing an information system architecture that is supported by an appli-

cation system landscape, it is beneficial to know how ASLs are composed in practice.

Constructing the application system landscape close to the prevalent design of practice

should facilitate its implementation in companies. Also, the question should be asked if

IT service providers, like other companies, already use enterprise management software,

in this case, ERP software within their ASLs. ASLPs are often not ASLPs exclusively but

have other business parts such as consulting (cf. section 4.2.5). Therefore, studying IT

service providers in general, here, is reasonable. In Table B.1 it is stated that the majority

of the interviewed companies use ERP systems.

Only one of the interviewed companies, a virtual machine hosting company C1, stated

that it does not use ERP software. C1 uses an application system landscape comprised

mostly of custom-made software. The ASL is centered around C1 ’s virtualized hosting

services. The interviewee of that company stated (translated and copy edited):

“[...] If you consider the employee size we have set in relation to the number

of customers we serve, we, of course, need a good information system. We, of

course, use it, every process that we have is automated, everywhere possible.

In short, we have no copy and paste. And, we work together with suppliers

who provide solvency information, to name an example. This is all fluently

integrated, and the software is in-house developed to the largest part. [...]”

C1 has a narrow product portfolio with a large customer base. Most processes, there-

fore, are automated. Because of high competition in the hosting sector, the company

needs to differentiate itself. For example, customers are provided access to the virtual

machines’ firmware. Compared to competitors, such low-level machine access is unusual.

50 An Information System Architecture for ASLPs

This product-based differentiation is achieved with in-house developed systems. C1 ’s ASL

accommodates the company’s specific need for automation and differentiation.

Companies that use standard ERP software use it for material management, sales,

finance, and accounting, controlling, as well as for human resources. Some desire additional

integrated functionality such as ticket management. Some smaller vendors offer such

specialized ERP software. A decisive factor for choosing standard ERP software is their

perceived quality in finance and controlling (Gronau, 2010, p. 12).

The interviewee of C11, a chief financial officer, was selecting a new standard ERP

software for his company at the time of the interview. Amongst the five ERP software

products the company had studied two systems stuck out: one with integrated ticketing

functionality from a smaller vendor and one without, but coming from a tier-11 ERP

software vendor. The interviewee of C11 gave the lack of quality in finance and accounting

of the smaller ERP software as the reason for purchasing from the tier-1 vendor (translated

and copy edited):

“[...regarding the tier-1 ERP software,] you don’t have to discuss accounting al-

gorithms and obviousnesses, which you sometimes need to discuss with smaller

vendors [...]”

Consequently, they planned to integrate the external ticketing software with the newly pur-

chased ERP software. A majority of the studied cases used additional standard IT service

management software for ticketing. Other standard software supported business functions

of customer relationship management and project management. The studied companies

often composed their ASLs in best-of-breed approaches by choosing software from different

vendors that were most suitable to support specific business functions (Wittgreffe et al.,

2006).

To find out what the other constituents of the application system landscape of IT

service providers are, the interview transcripts from the case study (cf. section 2.1 and

chapter B) were analyzed. The interviewees reported on business functions that are sup-

ported by application systems (cf. section B.2). The business functions and application

systems were coded in the interview transcripts. Coded occurrences were then grouped.

The coding and grouping led to three major categories of application systems (Hintsch

et al., 2016b). These categories are depicted in Figure 4.1.

Application systems of IT service providers include enterprise management, IT ser-

vice management, and IT service production. Enterprise management software integrates

all business functions of an enterprise as well as its resources into a common database (cf.

section 3.2.1). IT service management software supports “[t]he implementation and mana-

gement of quality IT services that meet the needs of the business. IT service management

is performed by IT service providers through an appropriate mix of people, processes and

information technology” (Cannon, 2011a, p. 16). IT service production (ITSP) systems

provide the actual service. ITSP systems include software for operations automation ap-

proaches. Clients’ application software (e.g., analytics software for a client of an insurance

1ERP software vendors are grouped into different tiers based on their size (Simon et al., 2010).

Johannes Hintsch, M. Sc. 51

Enterprise management systems

IT service

management

systems

IT service

production

systems

External IT service

providers with

industrial service

provisioning

Internal and external

full service IT

providers

IT service providers

with personal service

provisioning

Figure 4.1: Comparison of IT service providers’ application system landscapes (based on
which application systems are mission-critical).

company) can also be understood as IT service production systems. Therefore, the ITSP

system can also include enterprise management or IT service management software if a

customer requests a specific service.

The application system landscapes of the studied companies contain the three types of

applications. ASLPs will need systems to support their enterprise management, provide

operational support (e.g., for ticketing), and they will need to produce the IT services

equipment-based. Therefore, architecture decision 1 is made:

Architecture decision 1

The ISAA’s application system landscape shall comprise three major system catego-

ries: enterprise management, IT service management, and IT service production.

The architecture decisions guide the construction of the ISAA (cf. chapter 2). Only

central architecture decisions are documented as it is not feasible to document every

architecture decision (ISO/IEC/IEEE, 2011, p. 15). They will be further substantiated

with requirements that are presented in the next section.

The following study can give some indication to find out which system should be

leading in the ASL of the ISAA. Hintsch et al. (2016b) located IT service providers within

the triangle. It was studied if the IT service provider type has an influence on the ASL

composition (Hintsch et al., 2016b). Studied IT service providers were placed in the

triangle based on the application systems within the respective provider’s ASL that were

most mission-critical. Figure 4.1 depicts three clusters that emerged from this placement.

Providers with external and industrial IT service provisioning are located in the tri-

angle’s lower right corner. Their IT service production systems are crucial to their busi-

ness. Consequently, they are used as a starting point to build the providers’ application

system landscapes. In the segment of very standardized services, it is hard to follow a cost

52 An Information System Architecture for ASLPs

Enterprise management systems

(e.g. SAP Business Suite)

IT service

management

systems

(e.g. ServiceNow)

IT service

production

systems

(e.g. OpenStack)

e.g. event management,

application and service

performance monitoring ...

e
.g

.
p
ro

je
ct

 a
n
d
 p

o
rt
fo

lio

m
a
n
a
g
m

e
n
t,
 c

u
st

o
m

e
r

re
la

tio
n
sh

ip
 m

a
n
a
g
e
m

e
n
t

Figure 4.2: Functionality convergence of application software packages.

leadership strategy (Porter, 1980, p. 35). Therefore, these companies try to differentiate

themselves by offering competitive functionality. This functionality requires their systems

to be highly individualized.

Providers who conduct personal service provisioning are placed between IT service

management and enterprise management systems. They are distinctly located closer to

enterprise management systems because business functions like project management and

human resource management are crucial to their business.

IT service providers who conduct both, internal and external full-service provisioning,

are positioned towards the middle of the triangle. Their industrial services contain a high

degree of standardization. Therefore, ITSP systems are required to offer these services.

Also, IT service management systems are needed to support request and incident mana-

gement during the service operation phase. Lastly, enterprise management systems are

used to financially monitor as well as support the provisioning of additional personal IT

services.

ASLPs are primarily industrial service providers. However, as will be shown in the

following section, the ISAA has to support different business models containing ASLPs.

Often, consulting services are offered in addition to landscape provisioning services. The-

refore, ASLPs are not positioned towards the lower right, but rather to the middle of the

triangle.

It is necessary to know which should be the leading system in the application system

landscape to construct the ISAA. The leading system is the one that triggers actions within

other systems and holds the master data (Otto and Schmidt, 2010). One option would

be to enrich IT service production systems with enterprise management functionality as

is done by cases C1 and C24 and make the ITSP the leading system.

Johannes Hintsch, M. Sc. 53

In addition to locating IT service providers in the triangle, it was studied how software

products of each application system category converge. The convergence was determined

based on the business functions that are supported by each application system category.

This investigation was based on sets of business functions defined by Lloyd (2011, p. 151),

Betz (2011, p. 131), and Schröder and Pilgram (2010). The work by Betz (2011, p.

131) is groundwork to the IT4IT component architecture. Figure 4.2 displays the result.

Primarily, a convergence between IT service management and enterprise management

software can be observed. This convergence includes, for example, business functions

such as project and portfolio management as well as customer relationship management.

Such convergence can also be observed between IT service management and IT service

production systems, for example, regarding event management as well as application and

service performance monitoring.

Existing application system landscape of IT service providers, in most cases, are cen-

tered around enterprise and IT service management systems. This is not surprising as

these systems, often based on standard software, offer most of the functionality required

to manage the IT service provider’s business. Therefore, the question has to be answered

whether the leading system should be the IT service management or enterprise manage-

ment system. Considering the business model of the ASLP that includes not only indus-

trial provisioning, but also some limited personal provisioning, the following architecture

decision is made.

Architecture decision 2

An enterprise management system shall be the leading application system within the

ISAA’s application system landscape.

Having analyzed the status quo, contractual, billing as well as service data is alre-

ady maintained in companies’ ERP systems (Hintsch et al., 2015b). Therefore, in the

construction of the architecture, it will be investigated how a standard ERP software can

support the automated production of ASLs. This support should go beyond aggregating

information from other systems. The ERP software should be the primary source of in-

formation, also regarding the full structure of the services. Usage of an ERP software,

proficient in controlling, should be valuable for adhering to the measurement principle of

DevOps (Alt et al., 2017; New Relic, Inc., 2015), in particular, business success.

Adhering to architecture decision 1, the two other application system categories also

have to be considered. Therefore, the following architecture decision (AD) is made.

Architecture decision 3

Ticketing and consumption data shall be fed back to the enterprise management sy-

stem by the IT service management and IT service production systems. Relevant data

such as contractual data or structural application service information can be looked

up in or integrated from the ERP system.

54 An Information System Architecture for ASLPs

Ticketing and consumption data originates in the ITSM and ITSP systems. It has to

be transferred to ERP system to enable full cost calculation of the services for billing and

controlling.

In the next section, requirements of the architecture for making further ADs will be

discussed.

4.2 Requirements of the architecture

Three cases from the case study were selected to illustrate the relevance of addressing

ASLPs and derive requirements for constructing the architecture. They are presented in

Table 4.1. The three cases were selected because they span all relevant company sizes.

These are small, medium, and large in regards to their employee size European Commis-

sion (2005, p. 14). As discussed in the research design chapter (cf. section 2.1), micro

companies were not included. The selected cases are further ASLPs. In addition to the

interviews, further data was used to analyze the three companies.

The requirements are grouped into four categories. Relevance (R) is derived from

practicability because the ISAA addresses real cases and can achieve utility for these

(Hevner et al., 2004). The service needs to be completely (C) described to leverage the

integration potential of the ERP system. Requirements specific to the product of ASLPs,

application services (S), are formulated. ERP systems are used to manage the processes of

a company. Therefore, the production process of ASLPs starting with customer require-

ments, over service operation and billing to service retirement, is addressed. Consequently,

the ISAA has to facilitate production manageability (P).

The four requirement categories and each requirement will be described in sections

4.2.1 - 4.2.4. Section 4.2.5 provides an overview of the requirements.

4.2.1 Architecture relevance

Cases Alpha, Beta, and Gamma illustrate that ASL providing is practiced in different

kinds of organizations. They differ in terms of size and business model. If ASLP is only

a part of the business model, the architecture must be able to integrate with the other

parts. For instance, parameter-based customization, full-fledged software development,

and consulting are also practiced by the case companies. The DevOps philosophy has

mainly been applied in companies whose primary business is software development (Alt

et al., 2017), but resulting microservice architectures can also grow to complex application

system landscapes (Lewis and Fowler, 2014). Therefore, the first requirement (REQ) man-

dates the information system architecture to address different business models containing

ASLP (REQ R.1).

Though this thesis focuses on producing ASLs, the ISAA has to facilitate the in-

tegration of processes that are out of scope (REQ R.2). For instance, Alpha has fully

implemented procurement in their ERP system to be policy compliant. Furthermore,

their ERP systems are used for financial planning. In general, some company processes

Johannes Hintsch, M. Sc. 55

Business model Application system landscape

Alpha is a large IT service provider.
Data comes from an interview, workshops, the company website, and other websites carrying relevant
information (e.g., for investors).

As a global corporation’s subsidi-
ary, Alpha’s ASLP business seg-
ment comprises enterprise appli-
cation services based on sourced
standard software. The services
are provided from Alpha’s data
centers. Customization and con-
sulting services are offered in ad-
dition to the application services.
Recently, data-center-backed IaaS
capabilities were added to provi-
der’s portfolio.

For enterprise management, a historically grown
application subsystem landscape of four standard
ERP systems is used, particularly in financial, quo-
tation, procurement, and order management, as
well as human resource management. IT service
management and production are based on virtuali-
zation and monitoring tools, an ITSM tool suite for
ITIL’s operation processes, enterprise application-
specific management software, as well as in-house
developed software automats for operations auto-
mation.

Beta is a medium enterprise application system landscape provider.
Data comes from an interview, the company website, and other websites carrying relevant information
(e.g., for investors).

The company markets in-house
developed enterprise application
software that customers can ope-
rate on-premises. Also, imple-
mentation and customization con-
sulting are offered. Increasingly,
customers use the managed ser-
vice offerings under which the cu-
stomer landscapes are operated in
the two data centers of the provi-
der.

The company employs its own ERP software, which
includes an industry solution for IT service pro-
viders, for its enterprise and partially for its IT
service management. While the ERP system is
used for financial, quotation, procurement, order
and human resource management, it offers market-
competitive integration capabilities with the ticket
system used by software development and service
operations personnel. Operations automation is
solved in the form of in-house developed scripts.

Gamma is a small enterprise application system landscape provider.
Data comes from interviews, workshops, the company website, and other websites carrying relevant
information (e.g., for investors).

The company deploys and opera-
tes highly standardized enterprise
application system landscapes ba-
sed on sourced standard applica-
tion software for its customers’
training purposes, while gradually
extending its business model to
IaaS and other industrial IT ser-
vice offerings.

Spreadsheet software is used for management of fi-
nance, quotations, procurement, and orders. There
is an ongoing project to implement an ERP sy-
stem for replacing spreadsheet-based management.
OAA software, as well as system maintenance soft-
ware specific to the sourced standard application
software that is provided to the customers, is used.
Incident management is supported with an IT ser-
vice management tool.

Table 4.1: Overview of illustrative case sample with descriptions about the business model.

56 An Information System Architecture for ASLPs

do not need to be supported by application systems. For instance, legal activities are

not within the scope of Gamma’s ERP implementation project. Furthermore, Alpha has

not automated its hardware procurement activities by using a just-in-time method, which

would promptly compensate low spare capacity, since hardware sourcing requires human

bargaining. When requiring process integration, critical success factors of ERP implemen-

tation need to be taken into account. In particular, scholars advise using a narrow scope to

determine which modules should be implemented without ignoring the vendor-designated

inter-module integration points (Momoh et al., 2010). Further, a danger lies in excessive

customization of standard software (Momoh et al., 2010). ERP systems will not be the

only systems required to implement the architecture. For instance, Alpha practices IT

service management aligned with ITIL but with a focus on service operation processes,

such as incident or change management. Gamma uses various additional software, and

also an IT service management software.

Hypothesis 1 requires companies to implement software for operations automation,

such as IaaS software. Thus, the architecture has to integrate with an organization’s

existing technology stack (REQ R.3). For instance, all case companies operate their own

data center. They have to consider the entire IT stack starting from facility management

and tasks, such as engineering the data center cabling plan and then actually completing

the wiring. Such work needs to be performed by engineers and artisans and cannot be

abstracted away without identifying a suitable replacement. Additionally, automation

can be viewed skeptically due to work required for formalization (Talwar et al., 2005).

Therefore, automation approaches which are evolutionary rather than revolutionary may

yield a higher success rate.

The analogy of manufacturing (REQ R.4) adds to the architecture relevance from a

scientific standpoint. It contributes to the existing stream of analogy-employing research

regarding the industrialization of IT (Zarnekow, 2007; Becker et al., 2011). The ISAA shall

leverage this analogy mainly by two means. First, proven application software for manu-

facturing shall be reused. Second, the reuse of the nomenclature could reduce differences

between manufacturing and IT for professionals working in supporting activities such as

financial controlling or sales administration. Further, it may bridge the gap between bu-

siness and IT of the provider. By taking a parts-based view that is consistently managed

in the provider’s ERP and related systems, the service structure is made transparent to

both the sales as well as the engineering staff of the provider.

4.2.2 Complete service description

An essential characteristic of services is that they are offered over a specified period.

Service level agreements declare service level targets to be met by the provider during

operation of the service (Cannon, 2011b, p. 453). Also, application services can be offered

on a subscription or pay-per-use basis (Iveroth et al., 2013). The pricing modalities of

the contract between the provider and the consumer need to be reflected in the service

description as well. Hence, REQ C.1 is that service level agreements and other relevant

Johannes Hintsch, M. Sc. 57

contractual specifications need to be considered (Riemer and Ahlemann, 2001).

Resources for computing, networking, and storage as well as software, such as opera-

ting systems or databases, have to be orchestrated and configured to provide the required

application services. All deployment steps of the customers’ ASLs should be automa-

ted. Automation should increase deployment speed undoubtedly above that of manual

deployment (Talwar et al., 2005). Therefore, the technical service description needs to be

sufficient for automated deployment (REQ C.2). At the same time, not all tasks involved

in production may be automated. Software engineering is an example. However, also in

deployment, a tradeoff can be made between the expenses of formalization required for

automation and the money saved by avoiding manual work. In some cases, such as com-

plex or infrequent customizations, manual steps should be addable to the technical service

description. Nonetheless, automation should have a high priority (Beyer et al., 2016; Alt

et al., 2017).

4.2.3 Application service specificities

For illustrating the merits of operations automation approaches, often illustrative and

relatively simple ASLs are selected (Wettinger et al., 2016). However, for the architecture

to be relevant (cf. REQ R.3), instantiations of the information system need to support a

realistic degree of complexity of the application services’ ASLs (REQ S.1). The complexity

of the three cases’ ASLs that offer their application services, for instance, surpasses the

examples of those used by Wettinger et al. (2016). Complexity is higher both in regards

to landscape size (e.g., node count) and configuration of each node.

Although standardization helps automation and therefore can reduce costs, customi-

zability is important to fulfill the customer’s requirements, too (REQ S.2). On the one

hand, an application service may be standardized without variability between customer

instances. On the other hand, a service can be engineered and be very customer-specific.

Using the mass customization approach (Ahmad et al., 2010; Teubner and Remfert, 2017),

some customizability needs to be offered with parameterized standard service offerings as

well. The range from standardized to individualized service is also apparent in the cases.

While Gamma offers highly standardized services, Alpha offers complex, customized sy-

stem landscapes to its customers to fulfill most of their requirements due to high market

competition.

Another principle of the industrialization of IT is modularization. In order to increase

reusability and to achieve customizability, modularization should be used in addition to

parameterization (REQ S.3). Modularization is practiced, for instance, by hierarchization

of the service catalog. When trying to automatically and semi-automatically assemble

application services, modules also have to be composable into a complex ASL. Such a

practice would be comparable to computer-integrated manufacturing (cf. REQ R.4 and

section 3.2.2).

58 An Information System Architecture for ASLPs

4.2.4 Production manageability

The production process should exhibit a high degree of automation (REQ P.1) to incre-

ase efficiency and quality. For the production process, automation of multiple technical

abstraction layers as well as business aspects, such as contractual specifications, has to

be integrated. In Alpha’s production process, customer and related internal orders are

being created based on entries from the service catalog. Such orders lead to instructi-

ons issued to the respective departments to set up assets, such as virtual machines or

networking equipment. The steps from a customer inquiry to a functioning system are

neither supported by a workflow system nor are they automatically performed. One of

the most substantial obstacles is seen in organizational integration challenges. Similarly,

Beta’s hosted service deployment is manually triggered outside their ERP system. Beta’s

data center administrators use a collection of custom automation scripts to accomplish

this task.

When automation would increase efficiency, KPIs should be gathered to measure

this variable (REQ P.2). While Alpha and Beta can make KPI-based statements about

operational efficiency, Gamma has little capability in this area due to a lower system and

process integration.

Beta, but also both other cases, illustrate the necessity to support engineering activi-

ties within the production process (REQ P.3). Such engineering activities may take place

within internal orders, for instance, when sales or marketing request service creation.

For software engineering, traditional and agile methodologies exist (Tarhan and Yilmaz,

2014). However, an increased merging of software and IT system landscape engineer-

ing methodologies can be observed, as indicated by the new trend of DevOps (Spinellis,

2012; Beyer et al., 2016). Engineering support methods such as simulations, which are

used in manufacturing and assist the early design phase of IT system landscapes (e.g.,

to optimize availability and costs (Bosse et al., 2016)), are not practiced by the cases.

However, engineering tasks that accompany or follow development, such as unit and inte-

gration testing are practiced. For instance, Alpha uses automated tests, although not in

a continuous delivery style as suggested by Humble and Farley (2010). Alpha’s employees

continuously have to work with newly introduced application software for the customer

(e.g., in-memory databases). Therefore, they cannot rely on pre-existing standardized

tests. Tests need to be developed by Alpha for automated testing. All three providers

rely on test environments to prepare their services for production. Beta even offers a

provider-hosted test environment as a value-added service in its implementation projects

before enterprise application systems at customers’ sites go live.

It is particularly evident for the global delivery models of Alpha that unambiguous

communication is crucial. Modeling tools and their diagrams could facilitate unambigu-

ous communication. Flawless communication is also vital in pure onshore delivery, but

modeling tools are not used for system landscape engineering by Alpha. Again, manufac-

turing with tools such as computer-aided design software acts as a benchmark (Goettsch

and Tosse, 2013; Herden, 2013). Also, to modeling tools assisting with unambiguous

Johannes Hintsch, M. Sc. 59

communication, they could serve as a basis for making system landscapes operational.

Mainly in cases were individual ASLs are created based on customer inquiries, price esti-

mates could be compiled from such models in early design phases. Early price estimates

can be crucial because costs are a decisive factor in an outsourcing decision (Riemer and

Ahlemann, 2001; Currie and Seltsikas, 2001; Lacity et al., 2010; Kappelman et al., 2014;

Schneider and Sunyaev, 2016).

The operation phase is crucial in the IT service’s lifecycle. Thus, its support is an

important requirement (REQ P.4). Particularly noteworthy is the system integration of

incident management, as practiced by Alpha and Beta. Such incidents can, for example,

result in informing the user about correct usage of the service, in ASL reconfiguration, or

in development activities.

Whereas in manufacturing the main billing activities are usually centered around the

shipment of the product, in industrial IT service provisioning the act of deployment, as

well as the continuous operation of the IT services, is usually invoiced by the provider.

Together with financial management, billing is a crucial part of the production process and

needs to be supported by the information system architecture (REQ P.5). The cases have

different maturity levels for billing as well as financial management. Alpha, for instance,

has difficulty in determining its service costs. One of the main reasons of Beta and Gamma

for implementing the ERP project is to automate the billing process as well as to make it

more consistent.

Next, the overview of the requirements will be provided.

4.2.5 Requirements overview

The requirements that were worked out and presented in this section are used as a rationale

to guide the architecture decisions. The architecture decisions are used to construct the

ISAA. Table 4.2 provides an overview of the requirements.

4.3 Selection of an operations automation approach

The goal of this section is to select one approach of operations automation. The selected

approach will then be used in the next chapter as a basis for constructing the architecture.

The decision process is guided by the requirements and by an analysis of different OAAs.

Wettinger et al. (2016) have identified multiple approaches for operations automation

that can be performed on different layers of the IT stack. Figure 4.3 shows which approach

focuses on which layer. The approaches and their focus on the different layers of the stack

will be illustrated in detail in the following.

Infrastructure management allows to create, inspect, modify, and remove infrastruc-

ture resources. Such resources can include virtual machines, virtual storage volumes, or

network components such as routers, to name some examples. Although infrastructure

management, in the context of operations automation, often refers to the management of

60 An Information System Architecture for ASLPs

ID Short description

Architecture relevance
R.1 Address different business models containing ASLP
R.2 Facilitate integration of processes not within the scope of the thesis
R.3 Integrate with organization’s existing technology stack
R.4 Leverage potential of manufacturing analogy

Complete service description
C.1 Consider SLAs and other relevant contractual specifications
C.2 Make technical service description sufficient for automated deployment

Application service specificities
S.1 Support realistic degree of customer ASL complexity
S.2 Service customizability, as well as standardization, need to be achievable
S.3 Modularization shall be used to increase reusability

Production manageability
P.1 Achieve a high degree of automation to increase efficiency and quality
P.2 Enable KPI-based management
P.3 Support engineering activities
P.4 Support service operation phase
P.5 Support billing and financial management

Table 4.2: Requirements for designing the ASLP information system architecture.

virtual infrastructure resources, the automated management of bare metal2 can also be

supported (OpenStack Foundation, 2011). Bare metal integration in IaaS systems enables

the direct use of physical hardware without the overhead of virtualization. Bare metal

integration relies on server functions to cold start the server over a broadcast from the

network and to load the operating system from the network (Magherusan-Stanciu et al.,

2011).

Automated infrastructure management usually can be performed by using an ap-

plication programming interface or command-line interface (Bumgardner, 2016, p. 56).

Consequently, this approach can be used by administrators manually or script-based to

perform specific tasks of managing infrastructure resources. An API facilitates the inte-

gration of these functions into custom operations automation software.

In plan-based configuration management, bare metal or virtual machines that have

fully loaded their operating system (OS) are configured. The configuration of physical or

virtual machines is performed above the OS layer. Although configuration options of the

OS can be specified, defining which OS is used is not in the scope of plan-based configu-

ration management (Wettinger et al., 2016). Language and plan-based configuration are

used synonymously (Talwar et al., 2005; Wettinger et al., 2016).

On the contrary, in hypervisor-based virtualization, virtual machine images contain

the OS and all other layers of platform and software. Plan-based configuration manage-

2Bare metal refers to executing an operating system directly on the server without a virtualization layer.
Direct execution can be beneficial in scenarios where performance is crucial (Bernstein, 2014b).

Johannes Hintsch, M. Sc. 61

Infrastructure

management

Hypervisor-

based

virtualization

Container-

based

virtualization

Model-based

configuration

management

Plan-based

configuration

management

S
o

ft
w

a
re

P
la

tf
o

rm
In

fr
a

s
tr

u
c

tu
re

Application

software

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Configuration

plans
Virtual machine

images

Container

images
Configuration

models

Platform-

centric

management

Platform-specific

application

software and

data

Configuration

plans

Virtually

represented

Configuration

plans

Virtually

represented

Configuration

plans

Virtually

represented
Configuration

plans

Virtually

represented

Virtually

represented

API- or CLI-based

or manual control

API- or CLI-based

control

Figure 4.3: Operations automation approaches focus on different layers of the IT stack.

ment and hypervisor-based virtualization can be combined with infrastructure manage-

ment, respectively. In this regard, Zhu et al. (2015) compare two approaches of dealing

with virtual machine images: heavily-baked images and lightly-baked images. Standard

virtual machine images are used across different application scenarios using the lightly-

baked approach. So for instance, the same base image is used for deploying a database

server host as well as deploying an application server host. After their operating systems

have fully loaded, plan-based configuration is used to configure the host as needed. The

lightly-baked approach has the advantage of cheap configuration variability. However, it

comes at the cost of an increased time required between booting a machine and being able

to use the services deployed on it. Also, this approach can have stability issues when, for

example, software package repositories need to be contacted to obtain software binaries.

When these repositories are not available due to network issues, the deployment can fail

(Zhu et al., 2015). Heavily-baked images contain all required configuration. Therefore,

they have superior deployment robustness as well as deployment speed. However, when

having a large variety of required configurations, large image quantities can become ex-

pensive to manage. Even though in the heavily-baked image approach many configuration

tasks can be performed before booting a host, some configuration may still be necessary

(Zhu et al., 2015). For instance, the management platform on which the heavily baked

images are orchestrated may require such configuration. Therefore, also hypervisor-based

virtualization will rely on some form of configuration management.

Container-based virtualization is similar to hypervisor-based virtualization in the

sense that configuration is done before starting a container. However, a container does not

contain its full operating system but shares its host’s OS kernel with other containers of

that host. Therefore, containers can only be executed on a host with a compatible OS ker-

62 An Information System Architecture for ASLPs

nel. A prominent representative of container-based virtualization is Docker3. Companies

that want to use Docker have to check if the OS that they use is supported. It supports

only very recent versions of Windows. Support for Linux is broader, but for most sup-

ported distributions, recent releases or kernel versions are required (Docker, Inc., 2017).

Container-based virtualization, in production, does not only rely on containers (cf. section

3.3.2). To manage vast application system landscapes, with elasticity requirements, orches-

tration frameworks such as Kubernetes are used. These manage the scheduled allocation

of containers to physical and virtualized resources (Bernstein, 2014b).

A key advantage of the container-based approach is its granularity and the fact that

containers deploy faster than full virtual machines (Felter et al., 2014). However, the recent

research by Manco et al. (2017) proposes that paravirtualized virtual machines could be

modified in a way where they exhibit even faster boot times and higher security compared

to container-based virtualization. Comprehensive management system support for such

an approach is not available yet though. REQ R.3 requires that the ISAA integrates with

an organization’s existing technology stack. The versatility of containers may be limited

in this regard. For example, companies like Alpha also operate legacy application software

for their companies. Moving legacy application software to the cloud stack comes with

some challenges (Gholami et al., 2017). Regarding container-based virtualization, a signi-

ficant challenge is the need for adapting the software to be stateless. Legacy application

software designed for on-premises often relies on the state to be stored such as contextual

information (Gholami et al., 2017). Following the argumentation of Brandon (2016); The

HFT Guy (2016), choosing containers as an underlying approach for operations automa-

tion may be problematic because containers are designed to be stateless and, consequently,

extensive re-engineering of legacy application software would be required. State can be

managed with containers (e.g., filesystem or relational database management systems).

However, for fully leveraging containers in microservice and cloud-native architecture sty-

les, where they are often suggested to bring most utility, substantial re-engineering efforts

for legacy systems is very likely to be necessary (Lewis and Fowler, 2014; Leymann et al.,

2016; Kratzke and Quint, 2017; Gholami et al., 2017).

Model-based configuration management, based on processor-supported virtualization,

covers the whole IT stack without abstracting away the infrastructure and OS. Further-

more, operating a diverse OS mix is more feasible on process-supported virtualization than

on container-based virtualization. Full and process-supported virtualization support those

OS that supports the process architecture of the virtual machine (Hoffmann, 2010).

Wettinger et al. (2016) differentiate infrastructure-centric and application-centric mo-

delling. Infrastructure-centric configuration models, based on defined meta-models, allow

to define behavior which can also be implemented with infrastructure management, but

in a standard format (OpenStack Foundation, 2012). Also, this approach allows defining

which configuration plans or scripts should be executed on which host. Application-centric

configuration models include the same functionality. Also, they add means to define relati-

3https://www.docker.com/

https://www.docker.com/

Johannes Hintsch, M. Sc. 63

onships between software components such as application software and middleware across

hosts. These relationships have to be substantiated with implementation artifacts (Binz

et al., 2014). Wettinger et al. (2014) state that idempotency and stable, converging confi-

guration is often hard to achieve. However, Hanappi et al. (2016) proposes a method for

testing configuration specifications to avoid instability and to achieve idempotency. Idem-

potency issues apply to both infrastructure- and application-centric styles because both

approaches rely on application software configuration to be performed language-based.

Scripts could also be used, but Talwar et al. (2005) describes ascending maintainability

when using script-, language-, or model-based configuration approaches on large systems.

For the scope of this comparison, infrastructure-centric and application-centric configura-

tion management are not differentiated because the layers they address are the same.

Finally, Wettinger et al. (2016) add platform-centric management to their list of

operations automation approaches. Platform-centric management is based on the PaaS

service model. This model can be appealing when developing new application software

because focus can be put only on developing the code. Maintenance and operation of

the underlying IT systems is the duty of the PaaS provider. A popular specification

is cloud foundry that provides a framework for PaaS-based custom application software

(Bernstein, 2014a). The cloud foundry framework allows for a standardized deployment

by the developers. The PaaS provider is responsible for the operation of the developed

software. Several PaaS providers have adopted this specification. PaaS has the advantage

of abstracting from the need of dealing with infrastructure-related questions. However,

this comes at the price of tightly binding one’s application software to the architecture of

the respective PaaS offering (Wettinger et al., 2016). For companies required to control

the whole IT stack, this may not be a suitable choice. This approach is also not selected

because essential layers are not represented.

An operations management approach that is selected as the subject of analysis for

the ISAA should focus on the whole IT stack and not abstract away specific layers. All

approaches, but one, fall short of that requirement. Therefore, the following architecture

decision is made:

Architecture decision 4

Operations automation, in the ISAA, shall be based upon model-based configuration

management.

Although this approach is chosen, the other approaches have their advantages and

could also be relevant for ASLPs. Hypervisor-based virtualization could be combined with

model-based configuration management. It could be conceivable to migrate to a heavily-

based image approach for frequently requested application services. Also, container-based

virtualization could be required by providers that implement the architecture. Conse-

quently, in the evaluation, it should be tested if the ISAA is also compatible with other

operations automation approaches. Nonetheless, model-based configuration management

has the advantage over virtualization approaches in that automation is explicitly docu-

mented. If a virtual machine or container image is not annotated with meta-data or if

64 An Information System Architecture for ASLPs

their creation scripts are not accessible it is not directly discernible what they contain or

how they are configured. The configuration models explicitly specify the configuration

and how the application system landscape’s operation is automated. Therefore, docu-

mentation effort is decreased, and possible erroneous communication between operations

professionals may be alleviated.

To run application software, some form of automation above the infrastructure layer

is necessary. The infrastructure layer should also be automated (cf. REQ P.1). As argued

in the introduction, the simple provisioning of infrastructure resources is likely to become

a commodity in the coming years. Infrastructure can be sourced from a public provider,

or it can be run in a private cloud on-premise. Consequently, the following architecture

decision is made.

Architecture decision 5

The ISAA’s application system landscape production shall be supported by on-premise

or sourced infrastructure as a service.

In the following section, the ISAA will be described.

Johannes Hintsch, M. Sc. 65

5 The information system architecture for
ASLPs (ISAA)

ASLPs, like most other organizations, interact in value systems with other participants

like suppliers and customers. Each organizational participant in the value system has its

value chain to produce or consume value, or do both. Each organization’s value chain can

be decomposed into business functions. Aggregated business functions are decomposed

into business functions on a lower abstraction level (Weske, 2012, p. 75). On the lowest

level of this decomposition, business functions are called activities. Business processes

consist of those activities, and they relate to business functions. Based on Weske (2012,

pp. 73–83), this coherence is shown in Figure 5.1. The terminology of Weske (2012) is

used when discussing business processes throughout this thesis. The taxonomy depicted

in Figure 5.1 also is used to provide context information about the setting in which the

ASLP is active (cf. Figure 5.2).

Figure 5.1: Value system and its sub-concepts, based on Weske (2012, pp. 73–83).

Figure 5.2 shows a value system of an ASLP as an example. The ASLP provides

a content management system (CMS) as an application service for a customer. The

customer uses this application system to support its business process for advertising new

products. One business function in this process is the activity Add product announcement

that directly uses the functionality of the application service. The activity is performed

to win new customers and belongs to the business function of marketing and sales.

66 An Information System Architecture for ASLPs

ASLP

Application service production

Operations

Primary business functions

Deployment

Primary business functions

Marketing & Sales

Add product

announcement

Product advertising

Value system

Business function

Business process

Application service

Develop new business

part of

part of

provides uses

Release

production order

Content

management system

...

...

...

...

...

......

...

...

...

...

...

...

...

 Hardware vendor B

 Software vendor A

Customer B

Customer C

Customer A

[text]

Value chain

Business function

Activity

Business process

Functional

decomposition

Association

Application service

Legend

Unordered

interaction
supports

...

...

Figure 5.2: Example of an ASLP’s value system and subordinate concepts.

For the ASLP, a similar functional decomposition exists: from the most aggregated

level of primary business functions (Porter, 1985, p. 37) down to the activity of releasing

a production order. This activity provides the application service, which is then used by

the customer.

The architecture is constructed from the viewpoint of the ASLP, which is captured

in the following architecture decision.

Architecture decision 6

The ISAA shall primarily be designed for application system landscape providers.

Activities can be system activities, user interaction activities, or manual activities

(Weske, 2012, p. 74). The system and user interaction activities are executed on an

application system. For the ASLP, the application system is one of the three categories:

enterprise management, IT service management, or IT service production (cf. architecture

decision 1). Standard application software will be the basis for these systems.

Before the business functions and application systems are presented, a domain model

will be presented in the following section. “A domain model creates a web of interconnected

objects, where each object represents some meaningful individual, whether as large as a

corporation or as small as a single line on an order form. [It] mingles data and process,

has multivalued attributes and a complex web of associations, and uses inheritance [...].”

(Fowler, 2003, p. 116) The domain model serves as a means of explaining the essential

entities of the architecture and their relationships between each other. Figure 5.3 shows

that the domain model is not associated with a specific layer, but it spans all layers of the

architecture. The layers used here correspond to those suggested by Winter and Fischer

Johannes Hintsch, M. Sc. 67

(2007) proposed for enterprise architecture, although, here, the term infrastructure is used

instead of technology.

The ASLP business model was described in section 4.2 and set into perspective above

in this section. After the domain model in the following section, the production process

for application services is described in section 5.2. The process includes system and user

interaction activities as discussed above. The application system landscape that supports

these processes is presented in section 5.3. A new application system, the production

execution system, is suggested in section 5.4. It orchestrates the different systems to

deploy, change, and terminate the customers’ application system landscapes. The domain

model will explain how the infrastructure layer is incorporated into the ISAA.

Business

Process Application service
production process

Integration Application
system landscape

Software

Infrastructure

Production execution system

Domain
model

ASLP business model

Figure 5.3: Architecture description aligned with standard architecture layers.

To create the architecture description, Unified Modelling Language (UML) diagrams,

in accordance with UML 2.5 (Oestereich and Scheithauer, 2012), and the modelling tool

Papyrus1 were used. UML is chosen over more specific tools, such as SysML2 or Archi-

mate3, in order to address a broad engineering audience. To model the business processes,

process diagrams of the widely used Business Process Model and Notation modeling lan-

guage, in version 2.0 (Weske, 2012, p. 206), were used. The diagrams were created with

the academic version of Signavio Process Manager4.

5.1 Domain model

The ISAA’s domain model cross-cuts the layers. In section 5.1.1, the relevant business

concepts, such as application service, resources, and customers are introduced and set

in relation to each other. Section 5.1.2 contains a description of how application system

landscapes can be deployed with the help of the selected operations automation approach

using the introduced resources. In the following section 5.1.3, the involved application

systems are first fully introduced. Finally, in section 5.1.4, a mapping of the presented

1https://eclipse.org/papyrus/
2http://www.omgsysml.org/
3http://www.opengroup.org/subjectareas/enterprise/archimate-overview
4https://www.signavio.com

https://eclipse.org/papyrus/
http://www.omgsysml.org/
http://www.opengroup.org/subjectareas/enterprise/archimate-overview
https://www.signavio.com

68 An Information System Architecture for ASLPs

Figure 5.4: ASLP’s business relationship with customers.

domain model entities to ERP master data types is presented. Figure A.2 provides a

detailed view of the domain model combining all layers.

5.1.1 Business domain

The first part of this layer is depicted in Figure 5.4. It is based on work by Ebert et al.

(2007)5. One or more application services, which in the case of the ASLP are provided by

ASLs, are aggregated to an IT product. Instead of directly selling an application service,

an IT product is used as a vehicle to bundle different application services together. The

bundling can be useful in order satisfy specific customer demands and declare sales prices

that are different from production prices (Zarnekow and Brenner, 2003; Ebert et al., 2007).

A customer buys the IT product. It can be an external customer or a different department

within the same organization. The application service supports a customer’s business

process. The customer buys the IT product based on a contract. It contains provisions

about the service duration and price of the IT product. The customer has users. This

differentiation is important because the user has a different relationship with the ASLP.

Users directly employ the application service and require support when problems occur.

The provider and the customer are typically responsible for monitoring the quality of the

application service (Skene et al., 2010). The perceived quality by the user, however, largely

contributes to the image of the provider (Zarnekow, 2007, p. 29). Application services

have one or more access points. Such an access point can, for instance, be a standard or a

non-standard web interface that is accessed by the users’ locally installed client software.

It is also possible that all application services are provided via the same access point with

5The model of Ebert et al. (2007) was modified in the following way to fit with the ISAA. The IaaS resource
subsumes Ebert et al.’s network and hardware entities (cf. architecture decision 5). Their application
entity is changed to software, covering a broader spectrum such as the configuration models as well
as software in general. The process model is replaced by a more elaborate concept of Weske (2012),
including a hierarchy of business function, business process, and activity. The service model can be
defined by different compositions of the application service entity, which was renamed from Ebert et al.
(2007)’s IT service entity. Their contractor entity is renamed to the word customer, which is more
ITIL-conform (Cannon, 2011b, p. 13). Associations were changed by the described modifications, but
are not elaborated on here.

Johannes Hintsch, M. Sc. 69

Figure 5.5: Core components of an application service in the ISAA.

different user credentials.

In Figure 5.5 it is shown what resources are used to provide an application service.

Several activities are used to perform an application service. These can be human inte-

raction activities or system activities. A system activity of a web-server, for example, is

to serve the user a website upon request. As previously shown such activities also exist on

higher layers of the stack (cf. Figure 5.1). Activities use four kinds of resources: human

resources, software, IaaS resource, and information. Human resources are usually not di-

rectly involved in the deployment or operation of application services as this is performed

automatically. However, they are required in business functions such as sales or system

architecture. Also, if service outages or other incidents occur, they are required. Specific

ASLP employee roles will be defined in section 5.2.

Software provides the actual functionality of each application service. This includes

programs that directly support an application requirement and that support application

software (Stahlknecht and Hasenkamp, 2005, pp. 226–227). However, software, here, may

also be a file or a user that was created. IaaS resources form the foundation on which

each application system landscape runs. They are further discussed in section 5.1.2. The

remaining resource is information.

Information resources may be application licenses required for proprietary software.

Furthermore, domain names can be resources which need to be tracked for accurate billing.

A particular kind of information is the service level agreement. Different possibilities exist

for representing SLAs (Keller and Ludwig, 2003; Berger, 2005; Skene et al., 2010). Looking

at the studied cases, company Alpha offers its services with SLAs that are differentiated

based on indicators. These indicators are its commitments regarding availability and

mean time to restore. The company has three classes (standard to premium) that are sold

with its services, regarding both availability and maximum response time. Similarly, Beta

offers service levels concerning availability and response times. This simple view of an

SLA, corresponding to ITIL’s basic SLA requirements (Hunnebeck, 2011, pp. 127–129), is

70 An Information System Architecture for ASLPs

adopted within the scope of this thesis (cf. REQ C.1). As an information resource it may,

on the data persistence layer, only contain a constant that states, for example, to which

class of response time this service belongs. During service operation, this information is

then used, for instance, to respond to incident requests appropriately (cf. REQ P.4). More

complex provisions such as customer monitoring and reporting capabilities (Keller and

Ludwig, 2003; Skene et al., 2010) are not considered here to ease the comprehensiveness

and reduce complexity. The SLA and contract are maintained separately. The contract

contains legal provisions as well as the duration and price of the IT product (Cannon,

2011b, p. 432). Legal provisions and price are not within the scope of the SLA resource,

which, here, is only used for IT service operation purposes. Treatment of the SLA is

summarized in the following architecture decision:

Architecture decision 7

One or no service level agreements shall exist for each application service. In the ISAA,

service level agreements only represent the agreed upon service level that pertains to

service quality indicators such as availability or maximum response time.

In line with architecture decision 4, configuration models are used as a basis for spe-

cifying how application services are made operational. Parameters can be used for mass-

customization (BTO scenarios), for instance, to change the secondary storage capacity

that is available for a webserver service. Configuration models configure IaaS resources

and software. Two configuration model kinds of the ISAA are the software configuration

model and the infrastructure configuration model. Whereas the software configuration mo-

del configures everything from the running operating system to the application software,

the infrastructure configuration model defines the virtualized resources and the base ope-

rating system image. The orchestration model coordinates both other models as required

(see Figure 5.6).

Model-based

configuration

management

S
o

ft
w

a
re

P
la

tf
o

rm
In

fr
a

s
tr

u
c

tu
re

Application

software

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Infrastructure

configuration

models

Software

configuration

models

O
rc

h
e

s
tr

a
ti
o

n
 c

o
n

fi
g

u
ra

ti
o

n
 m

o
d

e
ls

Infrastructure as a

service system

(in house or sourced)

Figure 5.6: Model-based configuration management on the different layers of the IT stack.

Johannes Hintsch, M. Sc. 71

A bill of materials (BOM6) is used to list the different resources that make up an

application service, leveraging the manufacturing analogy (cf. REQ R.4). It is used as a

basis to manage each application service in the enterprise management system and is used

as a structure to transport the deployment information into the IT service production

system.

The three configuration models are used to fully describe an application service in

a way that it can be deployed (cf. REQ C.2). The next section will detail how this

configuration is performed.

5.1.2 Operations automation

Figure 5.7 displays how software configuration is conducted on the software layer. Soft-

Figure 5.7: Configuration of the software layer.

ware configuration models compose different software configuration options. Configuration

models can be modularized as is common in software engineering (cf. section 3.3.1). Con-

figuration options can be as atomic as configuring specific attributes of a file. However, if

the complexity of configuration models is abstracted in modules, higher-level configuration

options can also be expressed.

Table 5.1 shows examples of different abstraction expressed in the DSLs of three

tools for software configuration management. Software configuration on the OS layer can

mean changing certain configuration files to configure the OS in the desired way. OS disk

mounting configuration is shown in the example where Saltstack7 is used. The file’s system

path is defined, its content is read from a defined source, and its access rights are set. On

the middleware layer, a Puppet9 configuration module can be used to set up a new database

with a specific name, a user, password, host, and access rights. Moreover and finally, on

the layer of application software, three lines of key-value pairs suffice to instruct Ansible8

to deploy the content management system with a specific administrator username and

6cf. Van den Berg (2007, p. 96)
7https://saltstack.com/
8https://www.ansible.com/

https://saltstack.com/
https://www.ansible.com/

72 An Information System Architecture for ASLPs

Operating system Middleware Application software

/ e tc / f s t a b :
f i l e . managed :
− source : s a l t : //

↪→ f s t a b
− user : root
− group : root
− mode : 644

mysql : : db { ’ wordpress db ’ :
user => ’ wordpress ’ ,
password => ’pw’ ,
host => ’ l o c a l h o s t ’ ,
grant => [’SELECT’ ,
’INSERT’ , ’UPDATE’ , ’DELETE

↪→ ’] ,
}

wp admin user :
↪→ admin

wp admin pass : pw
w p t i t l e : My T i t l e

Setting mount points with
Saltstack7 (SaltStack, Inc.,
2017).

Creating a database with the MySQL
configuration module of Puppet (Pup-
pet, Inc., 2017).

Setting up the Wordpress
content management sy-
stem with an Ansible role
(Logsdon, 2015).

Table 5.1: Software configuration on different layers using Saltstack, Puppet, and Ansible.

password and a title. Therefore, software configuration options can be atomic as setting

file permissions but also perform configuration on the layer of application software.

The software state depends on these options. Examples of components of a software

state are a created file, a running or stopped service, or an installed package. The software

state makes up one part of the instance state, which will further be described in the

following. The software state is invoked by the configuration management agent based

on the software configuration model. On every physical or virtual host of an ASL, a

configuration management agent is running. A configuration management master manages

configuration management agents.

Although operating systems are themselves software, they can contain other software

such as system management tools. The operating system is contained in an image that

may contain additional pre-installed software.

For the inductive analysis of software configuration management, Puppet was used.

Puppet9 is amongst the frequently named open source tools in this application area (Delaet

et al., 2010; Spinellis, 2012; Hintsch et al., 2016a; Wettinger et al., 2016) and is also

acknowledged in industry (Fletcher et al., 2016).

Figure 5.8 displays how the configuration model manages the virtualization and some

of the OS layer. For the inductive analysis of operations automation on these layers,

OpenStack was selected. It is praised by industry analysts (Nelson et al., 2014), has

competition-spanning industry support (OpenStack Foundation, 2017), and its adoption

rates are increasing (Talligent, 2016).

When using an IaaS system, an image is used to boot an instance. The instance is

mostly identical with a virtual machine, but its base images come with integration with the

IaaS system. Integration facilitates, for example, authentication and network management

(OpenStack Foundation, 2018). Each instance has a lifecycle state of its own, including, for

example, such states as started, rebooting, running, or terminated. The instance lifecycle

state contributes to the instance state. The instance state may differ from one instant

to the next based on the input directed at the instance or the computation currently in

9https://puppet.com

https://puppet.com

Johannes Hintsch, M. Sc. 73

Figure 5.8: Configuration of the infrastructure layer.

progress.

An instance uses different types of IaaS resources. These are CPU, memory, storage,

and networking. The available bandwidth quota can differentiate a networking resource.

Network resources such as virtual routers or gateways are not depicted in Figure 5.8. Their

specifics are not necessary to understanding how a functioning ASL may be set up within

the ISAA (Bumgardner, 2016, p. 107).

Figure 5.9: Version control system.

An infrastructure configuration model defines the instance. Therefore, it defines which

IaaS resources the instance comprises and what image it boots from. The infrastructure

configuration model is managed by the IaaS master of the IaaS system. The IaaS master

also controls the IaaS nodes of the IaaS system that host the instances. The orchestra-

tion configuration model orchestrates the other model kinds. In the case of a database

server, links the corresponding software configuration model to an infrastructure configu-

ration model, thereby making up the full service. Figure 5.9 shows that all three types

of configuration models can be stored using a version control system (Spinellis, 2005). In

particular, the software and infrastructure configuration models can be reused between

services (cf. REQ S.3).

In the next section, the version control system will be classified with the other central

application systems of the ISAA’s application system landscape.

74 An Information System Architecture for ASLPs

5.1.3 Application systems

Several application systems (e.g., IaaS master, version control system, and configuration

management master) carrying out the automated ASL production were introduced in the

previous parts of the domain model. Figure 5.10 classifies the aforementioned software

components by using the application system categories from section 4.1. The Figure also

sets the systems in relation to the ERP system, which is leading the production process.

The proposed information system architecture narrows the scope to ERP systems for

manufacturers (cf. REQ R.4) and the following decision is made:

Architecture decision 8

A standard ERP for manufacturers system shall be used as the enterprise management

system.

Other application software such as CRM software may be used in the enterprise manage-

ment category but is not the primary scope of this architecture. Limited CRM functiona-

lity is contained in the ERP system used for analysis.

For the inductive analysis, SAP ERP was selected as the ERP software for manufactu-

rers. It is ranked higher than Oracle Corporation’s ERP software by Gartner (Guay et al.,

2015) and the two competitors are the only Tier-1 ERP vendors (Simon et al., 2010). Also,

SAP ERP’s business functionality can be analyzed and extended because all application

source code is available in its source when having access to the system (SAP SE, 2016).

The assessment of industry accepted analysts addresses REQs R.2 and R.3. Prevalently

implemented tools facilitate ERP-based process integration with processes that are not

within the scope of the thesis (cf. REQ R.2). Similarly, the integration with organizations’

existing technology stacks is facilitated (cf. REQ R.3).

In addition to the three application system categories, a new application system is

introduced. It is called the production execution system (PES). The production execution

system is similar to manufacturing execution systems that manage the operations on

the shop floor of factories producing physical products. Generally, these systems are

responsible for the schedule of activities in a factory, management of production activities,

document control, data collection and acquisition, labour management (e.g., mapping

workers to shifts based on qualifications), quality management, dispatch of production

units, maintenance management, product tracking and genealogy, performance analysis,

and resource allocation (Saenz de Ugarte et al., 2009). For application service production,

the PES acts as an intermediary between the ERP system, the IT service management

system, and the IT service production system. The PES orchestrates the IT service

production system’s sub-systems based on orders in the ERP system (cf. REQ P.1). It

initiates billing based on fixed price regardless of volume and per unit price pricing (Iveroth

et al., 2013). Furthermore, the PES communicates changes of the application system

landscape to the IT service management system. Such changes occur when customer

ASLs are added or when changes are applied.

Johannes Hintsch, M. Sc. 75

The PES is purposefully designated to be a separate system from the ERP system.

As ERP customization and development can be quite costly, this approach should be more

cost efficient (Momoh et al., 2010). Data quality is not impeded because the responsibi-

lities of the ERP and production execution system are similar to ERP system’s default

capabilities of interfacing with a manufacturing execution system to handle production

orders (Saenz de Ugarte et al., 2009).

Consequently, the following architecture decision is made:

Architecture decision 9

A production execution system shall act as an intermediary between the three the ERP

system, the IT service management system, and the IT service production system. The

production execution system shall be implemented separately from the ERP system.

In Figure 5.10, the production execution system and its relationships with other systems

are shown.

The ERP system controls the production execution system via its production and

logistics module. There is also a reverse connection to the ERP system. The PES con-

trols the sales module, mainly for billing purposes. This will be explained in more detail

in section 5.3. The PES also controls the previously introduced software components to

configure and deploy the ASLs. Furthermore, relationships between the IT service pro-

duction system’s subsystems exist: the IaaS master manages one or more IaaS nodes.

Multiple instances can run on one physical server, or a bare metal instance is used (Open-

Stack Foundation, 2011). The interfaces, indicated by the control-label associations in the

diagram, are usually network based. Of course, both depicted ERP system modules are

also interconnected (Gronau, 2010, p. 53), but since these connections are not specific to

this architecture, they are not shown in Figure 5.10. In the analyzed ERP software by

SAP, interfaces of the standard modules are also not network based and do not require

additional attention within the scope of this architecture (Gronau, 2010, p. 41). If a fully

service-oriented ERP system or an enterprise management system with several standalone

process support systems (e.g., one system for production and one for sales) is used, the

interface may be network based. However, for the analyzed ERP software, all modules

can be hosted in the software’s application server component, which is installed on one

instance. The components used by the production execution system as well as the system

itself make up the IT service production system.

The primary data entity types that will be used in the architecture are those from

the ERP software’s master data entity types. Therefore, in the next section, a mapping

of entities defined in the domain model to the ERP software’s master data entity types

will be presented.

5.1.4 Mapping of domain entities to ERP master data

A data model is required to store application services and their components. Following

the manufacturing analogy (cf. REQ R.4), this information is stored as master data in

76 An Information System Architecture for ASLPs

Figure 5.10: Application systems that are central to ASL production and their typically
network-based connections (control associations).

Figure 5.11: ERP master data entity types and their relationships.

the ERP system. Figure 5.11 shows the entity types and the relationships which are

used in the ISAA. The mapping of these entity types to entities of the domain model is

depicted in Figure 5.12. In addition to the BOM, important master data entity types in

computer-integrated manufacturing (Scheer, 1997, p. 93) are the following. A routing

defines operations (Sheikh, 2003, p. 446) required to transform raw materials and semi-

finished goods into finished goods. Finished goods are sold to customers as products

(Van den Berg, 2007, p. 56). To manufacture a good, a production order (Scheer, 1997, p.

235) triggers the start of the manufacturing process on the shop floor of a factory as defined

by the routing. The actual transformation from raw material into semi-finished goods is

performed with different kinds of manufacturing equipment and the human resources in

a work center. A routing may have multiple operations that describe the tasks that are

performed in different work centers.

Johannes Hintsch, M. Sc. 77

Figure 5.12: Master data mapping (not all associations between standard master data
types are shown).

One work center is always related to precisely one piece of manufacturing equipment:

the production execution system. While in manufacturing, different equipment is maintai-

ned in the system, this is not necessary for the scope of the ISAA, and this is different from

previous concepts. Ebert (2009, p. 142) modeled infrastructure resources as equipment

to be able to plan capacity. However, when adopting the IaaS system as a base for IaaS

resources (cf. architecture decision 5), infrastructure capacity planning can be delegated

to an internal or external IaaS provider. For their provisioning of capacity, a management

approach such as suggested by Ebert (2009, p. 142) may be selected. When operating

the actual IaaS system, the knowledge of actual servers is essential. Within the ISAA,

for producing application services, the infrastructure configuration models abstract this

detail. If different infrastructure resources are required, these are identified by different

infrastructure configuration models. Consider the example shown in Figure 5.13. There,

to operate the IT product fast content management system, different infrastructure confi-

guration models are available. A bare metal version of a standard SUSE Linux Enterprise

Server (SLES) is selected. Therefore, bare metal IaaS resources are billed. For both other

infrastructure configuration models, virtual IaaS resources would be billed. Consumption

of IaaS resources is only modeled based on the four material types (CPU hour, memory

hour, storage hour, and bandwidth hour), which may differ only between different types

instances (e.g., hypervisor-based instances or bare-metal instances, or standard instances

or high-availability instances).

For each deployment, all components of the production execution system will be em-

ployed. The configuration models define the tasks which the components need to perform.

For instance, the orchestration configuration model might instruct the IaaS master to

spawn an instance based on a given infrastructure configuration model. Therefore, while

78 An Information System Architecture for ASLPs

Application service

Finished product

Semi-finished product

Raw material

Infrastructure configuration model

Billable IaaS resources

Software configuration model

Orchestration configuration model

IT product

IC_SLES_11_Std_Bare_L

IC_SLES_11_Std_L

V_MEM_HOUR

V_STOR_HOUR

V_BDWTH_HOUR

BARE_MEM_HOUR

BARE_STOR_HOUR

BARE_BDWTH_HOUR

V_CPU_HOUR BARE_CPU_HOUR

Fast content management system

Wordpress_on_LAMP_baremetal

SC_Wordpress_CMS

OC_Wordpress_LAMP_baremetal

SC_Apache_Web SC_Mysql_DB

IC_Ubuntu_1404_Std_M

Material types Domain model entities

used

not used

Legend

Service level agreementSLA_CMS_Silver

Figure 5.13: Example of different materials making up the IT product fast content mana-
gement system.

configuration models contain the information for application service production, for ma-

nufacturing, this information would be contained in the routings. Human resources, such

as operators, are usually not involved in the automatic deployment and operation of the

application services (cf. REQ P.1). Table 5.2 presents a comparison of how central domain

entities are used differently in the domains of ASL and physical goods production.

Within this thesis, a mass customization approach (Ahmad et al., 2010) is followed

where standardized products and processes are employed while still offering a degree of

variability (cf. REQ S.2). Different methods exist to achieve this. The most individual

products will be deployed in engineer-to-order scenarios. For these products, separate

corresponding BOMs will be created. Generating BOMs is one way of satisfying different

customer demands. However, if the same product or a very similar product is sold, build-

to-order scenarios will be favorable because there will be less administrative overhead, for

instance, because no BOMs need to be created (Ahmad et al., 2010). To support variation

in production, configurable BOMs are used (Scheer, 1997, pp. 120–127). Differentiating

ETO and BTO scenarios has consequences for the construction of the application service

production process. Hence, this architecture decision is made explicit:

Johannes Hintsch, M. Sc. 79

Entities of the
domain

Application system landscape
production

Physical goods pro-
duction

Bill of materials Contains all configuration models
necessary to automatically deploy
and operate the application service,
as well as SLAs and other informa-
tion resources

Contains all raw materi-
als and semi-finished goods
necessary to manufacture
(semi-)finished goods

Routings Contains operations such as accep-
tance testing and deployment

Contains all operations ne-
cessary to transform a
good

Manufacturing
equipment

An IT service production system
consisting of different components
(see Figure 5.10)

Different machines that
might be orchestrated by
a manufacturing execution
system based on routings

Table 5.2: Examples of master data types for application system landscape production in
contrast with physical goods production.

Architecture decision 10

Application services shall be provided in two scenarios. First, if customers have parti-

cular requirements that cannot be served based on the existing configuration models,

the engineer-to-order scenario applies. Secondly, in cases where customers can be

served from the existing portfolio, the build-to-order scenario applies.

Different functional properties of application system landscapes may include user accounts,

domain names, or activated application software modules. Non-functional properties may

include scaling policies for up and down or for out and in as well as different SLAs. Such

variations may be implemented with configurable BOMs (SAP SE, 2013). To deploy an

application service, a production order needs to be created which contains corresponding

routings. Within the ERP system, the application service is maintained as a finished good.

The BOM includes the SLA, information resources, and semi-finished goods, which are

the three kinds of configuration models. A manufacturing plant produces physical finished

goods that are sold to customers. The term servitization for such companies describes the

trend of selling additional services to customers after the main physical product was sold

(Zolnowski et al., 2011). ASLPs deploy and then operate their customer services. In

this sense, the deployment phase is comparable to the shipment phase, and the operation

phase is comparable to the after-sales relationship with the customer in manufacturing.

The question arises of how to map these lifecycle phases of application services to ERP

systems for manufacturers.

Therefore, when comparing IT services to physically manufactured goods, one funda-

mental difference is the duration of a service. A physical product is manufactured, sold

and shipped to the customer. Apart from maintenance, the manufacturer may not come

into contact with the sold items again. In contrast, the IT service is deployed and then

80 An Information System Architecture for ASLPs

operated for a specified or unspecified period by the IT service provider. When using an

ERP system for manufacturing this duration has to be represented. Two alternatives exist

for modeling this, using the presented master data entity types.

The first alternative is to use a production order to model the duration of the IT

service. Routings could define the different lifecycle stages of the IT service. One routing

would exist for deployment, one for operation, and one for termination. In case of a

three-month contract, the routing for the operation would have a processing time of three

months. This would mean that the production order would be open (the period from

release to confirmation) for three months. However, this alternative has the disadvantage

that the ERP logic of material flows would not be observed. Also, performance indicators

such as work in progress would not be usable.

The second alternative is to map the duration of the IT service to a contract. Such

contracts have a duration and a stipulated quantity of goods that the customer buys from

the provider (SAP SE, 2017c). In this way the production order has a routing for deploy-

ment, and after successful deployment, the production order is confirmed successfully, the

operation phase starts, and its duration is modeled in the ERP system by the duration in

the contract and the corresponding amount of billable IaaS resources. In this scenario, the

production order is confirmed when the application service is fully deployed. Therefore,

the period in which the production order is open equals the time of deployment and can

also be used to monitor deployment times (cf. REQ P.2). This alternative is chosen as

stated in the following architecture decision (cf. REQ C.1):

Architecture decision 11

The duration of an application service shall be modeled in a contract.

This decision is made because, from the provider’s perspective, the task of making service

available to the user is complete when the deployment is completed. Hence, the production

order confirmation marks this point. After that, the IT service production system is set

up and does not need intervention unless a change becomes necessary.

The contract specifies the business relationship between customer and provider. This

contract has one or more deployment and operation sales orders, each having their billing

documents (cf. REQ P.5). ETO sales orders are specializations of deployment sales

orders that are associated with projects under which engineering activities for individual

application services are conducted (cf. REQ P.3). While one deployment sales order is

usually created per contract to deploy the application service, multiple operation sales

orders are generated during the operation phase of the service (cf. REQ P.4). These

operation sales orders bundle together the raw materials, including CPU, memory, and

storage hours, as well as the networking bandwidth that was consumed during a billing

interval.

If a change becomes necessary, this is handled with a return order (SAP SE, 2017b).

The next section will describe the application service production process, including the

operation phase, in which changes are performed to the service.

Johannes Hintsch, M. Sc. 81

5.2 Application service production

Based on the defined domain model, an overall production process will be defined to

manage inquiries, provide services, and bill accounts. It will show, how application ser-

vices can systematically be produced based on the operations automation approach and

configuration models.

Traditional service lifecycle models of IT service management consider the overall

application system landscape of an IT service provider (Praeg and Spath, 2008) without

making prescriptions concerning how this ASL should be structured. For example, consi-

der an internal IT service provider who operates one ERP system for its manufacturing

business. The borders between this provider’s IT service production system and the actual

service it is providing are less clear-cut than the systems of an ASLP that has implemented

this architecture. The IT service production system of the internal IT service provider,

which also comprises the ERP system, could offer services to support payroll. Adding

new or changing existing ERP services to the service catalog, in this example, means to

manipulate the central part of the IT service production system: the ERP system and

possibly also the underlying systems.

For an ASLP, service additions or modifications may require a change to the IT ser-

vice production system, for instance, if a new function in the IaaS system is required.

However, the IT service production system should stay constant in its architecture and

general configuration apart from things such as adding hardware resources to increase

capacity. Customer requirements should be encoded in the configuration models of the

application service. Cloud computing services usually strive for multi-tenancy to reduce

costs, but this constrains the variability of offered services (Rimal et al., 2011; Mietz-

ner et al., 2011). ASLPs provide application system landscapes, and multi-tenancy is

only explicitly required at the infrastructure layer (provisioning of instances). The service

portfolio, consequently, is not restrained in terms of variability (cf. REQ R.1). Lifecycle

models for cloud computing services, as suggested by Breiter and Behrendt (2009), are

scoped to multi-tenant services. Because of the different scope of both general IT service

management and cloud computing, the high-level business process for application service

production is derived from generic frameworks of manufacturing and IT service manage-

ment. In the context of this architecture, cloud computing can be seen as an enabling

paradigm combining previous research results from service-oriented computing, service

science, hardware virtualization, and model-driven software engineering.

For specific services (the ETO scenario), the primary activities of the value chain

(Porter, 1985, p. 37) of an ASLP need to be tightly integrated. Compared with physical

goods, any IT service has three service characteristics (Praeg and Spath, 2008): services

are intangible, the provisioning and consumption of services co-occur (uno-actu principle),

and external factors are integrated (e.g., the customer). Therefore, although industrial IT

service production is comparable to manufacturing, the sales process is very different

because it needs to consider a continuous relationship with the customer during the time

of operation. An IT service cannot be stored, marketed, and then sold, as it is possible for

82 An Information System Architecture for ASLPs

physical goods. IT services are consumed while they are produced (uno-actu principle).

Activities such as sales and order processing occur before the IT service is realized.

Therefore, the overall production process for application system landscapes of the

proposed information system architecture is framed by a textbook order-to-cash process.

With this, it is acknowledged that before any IT service provisioning activity occurs, some

pre-sales or order processing activity needs to take place. Two process frameworks itera-

tively enhance the process. One focuses on production in a supply chain, while the other

specifically concentrates on IT service management. Figure 5.14 displays this iterative

development.

ITIL

Inquiry &

order processing
Engineering Deployment Operation

SCOR

Order-to-cash

- Pre-sales activities
- Sales order processing

- Billing
- Customer payment processing

- Source
- Make

- Picking and packing
the goods

- Return - Deliver

- Shipping

- Design - Transition - Operation

Inquiry &

order processing
Deployment Operation Billing

- Plan

Inquiry &

order processing
Deployment Operation Termination

- Strategy

Figure 5.14: Development of the overall production process based on three relevant process
frameworks.

The order-to-cash process differentiates pre-sales and sales order processing activities.

Pre-sales activities in BTO scenarios may also be conducted by displaying different vari-

ations of the application service in a webshop. In such cases, customers may place their

orders themselves. In ETO scenarios, providers must repeatedly engage customers to un-

derstand their needs and discover how to deliver satisfactory services, which is similar to

iterative software engineering process models (Boehm, 1988). Therefore, the term inquiry

is used to show that the request of a customer needs to be addressed and if the customer

makes a purchase decision, the order has to be handled as well. However, the intricacies

of order management are only summarized here. Picking and packing the goods is the

activity that occurs before shipment. An application service deployment phase is mapped

to this. After an order has been picked and packed, it is ready to be shipped. Shipment in

the order-to-cash process is similar to the operation phase of IT services. While a product

is only shipped once, the IT service is continuously operated. During billing and customer

payment processing, this continuity of the IT service needs to be considered.

Previous work suggested to transfer the Supply Chain Operations Reference (SCOR)

model to IT service provisioning (Hochstein and Uebernickel, 2006). SCOR adds the con-

cept of a full product lifecycle. Here, the return phase is relevant because customers may

Johannes Hintsch, M. Sc. 83

Inquiry &

order processing

Inquiry & order

processing

Example business process

Engineering Deployment Billing Operation Termination

Figure 5.15: Application service production process.

request that their data is made accessible at the end of a contract to transfer the data

and continue using a similar service at another provider. From the provider’s perspective,

application services have to be terminated in a structured fashion when the customer no

longer requires them. This termination has to be reflected in the systems of the provider.

Although sourcing (Supply Chain Council, 2010, p. 1.2.1) is not mapped as its phase,

external IaaS resources may be sourced, for example in the deployment phase. The met-

hod and timing of sourcing depend on the concrete business model of the ASLP and the

sourced products and services. For example, the choice between different external IaaS

providers in the sourcing strategy should consider different aspects. Despite x86 being the

predominant processor architecture the technologies between providers become less open

for migration further up the technology stack. For instance, Rackspace uses OpenStack

as a basis for its IaaS services while Amazon uses its software. Although the OpenStack

open source community strives towards compatibility with Amazon’s orchestration format,

neither complete nor, more importantly, bidirectional compatibility have been accomplis-

hed (OpenStack Foundation, 2012). Therefore, the sourcing strategy, which should not be

reconsidered for each customer, is an integral part of the business.

ITIL has five central lifecycle phases: service strategy, service design, service transi-

tion, service operation, and continual service improvement (Cannon, 2011b, p. 28). The

framework enhances this architecture’s overall production process with an engineering

phase where the application service is devised according to the customers’ requirements.

Continuous improvement is not represented in the illustration. ERP systems implicitly

address it as one of their benefits is cycle time reduction (Staehr et al., 2012). Zarnekow

(Zarnekow, 2007, p. 108) differentiates between IT service providers targeting an ano-

nymous market (BTO case) and those that serve specific customer requirements (ETO

case). In this regard, in addition to the customer engagement activities of inquiry and

order processing, marketing and market research are essential activities. Their discussion,

however, is out of the scope of this thesis. For the BTO case, it is assumed that they

occur before the process is executed. For the ETO case, marketing will have been carried

out in some form before process execution. However, the customer requirements and the

competencies of the provider need to be considered during inquiry, order processing, and

engineering. Activities in the engineering phase are carried out in two cases. The first

case is when a new service is engineered in an ETO setting for a specific customer, or

84 An Information System Architecture for ASLPs

a new BTO service is engineered for an anonymous market. The second case is when

existing services are extended or modified due to feature requests or software faults. In

both cases, software engineering activities would be conducted which are based on the

configuration models previously described. Figure 5.15 shows the overall process for pro-

ducing application services based on application system landscapes. It also illustrates that

each high-level business process needs to be specified in a more detailed business process.

The constructed application service production process is documented in the following

architecture decision.

Architecture decision 12

The high-level application service production process shall consist out of the follo-

wing more fine-grained business processes: Inquiry and order processing, engineering,

deployment and billing, operation, and termination.

Each of the high-level business processes will be detailed in business process diagrams

in sections 10 - 5.2.5. Four roles are differentiated in these process descriptions, indica-

ted by the activity partitions: administration, architecture, development, and operations.

These roles could be further differentiated, but for the sake of simplicity, responsibilities

are limited to these four. They are aligned with the responsibilities necessary to perform

the activities of each process phase. In BTO scenarios, all activities should be either auto-

mated or performed by the administration. In contrast, in ETO scenarios, the other roles

will be required as well. The administration role is an aggregate of sales and administrative

staff responsible for creating sales orders, procuring, initiating deployment, and billing.

The architect designs the application service. The responsibility of this role is to commu-

nicate with customers and developers to clarify customer requirements. The architect will

work with developers only if new software functionality needs to be implemented. The

operations professionals are responsible for supplying the configuration models that are

required for deploying and operating the application system landscapes of the customers.

Development and operations reflect the current DevOps philosophy (cf. section 3.3.1).

The defined roles are reflected in the following architecture decision:

Architecture decision 13

The application service production process shall have the roles of administration,

architecture, development, and operations.

Inquiry and order processing will be detailed in the following.

5.2.1 Inquiry and order processing

The business process of inquiry and order processing starts with an incoming customer

inquiry. The process is depicted in Figure 5.16. In the first step, the customer requirements

are recorded.

In the BTO scenario, the requirements can be recorded by a customer who visits a

web portal, views the service catalog, and selects the service. A call center agent could

Johannes Hintsch, M. Sc. 85Inquiry & order processing

Ap
pl

ic
at

io
n

sy
st

em
 la

nd
sc

ap
e

pr
ov

id
er

Ad
m

in
is

tr
at

io
n

Administration

Gather customer
requirements

Create or modify
contract ETO or BTO?

Create
deployment
sales order

Deployment and
billing

Engineering

incoming
customer

inquiry

Customer
requirements

Customer

Sales module of ERP system

ET
O

BT
O

Figure 5.16: Inquiry and order processing process.

facilitate the customer (Ward et al., 2008). In cases where the service catalog is insufficient,

the process continues as ETO. For ETO, gathering the customer requirements may be

accompanied by a pre-sales workshop. Depending on whether it is a BTO or ETO scenario,

the customer requirements can be coded in a database entry of a webshop system, or it

can be a semi-structured document stored along with an inquiry made in the ERP system.

If required the customer inquiry could also be answered by a quotation from the provider,

which is not modeled, but easily addable Gronau (2010, p. 87).

In the BTO scenario, the customer requirements include infrastructure sizing, dura-

tion of the contract and specific services. After the customer has been informed about the

application service portfolio in a BTO scenario, the requirements, for example, regarding

infrastructure sizing, duration of the contract and specific services are gathered. Based on

these requirements, a contract is created. A contract may also be modified if the process

is executed as part of the change process that will be discussed in section 5.2.4.

The contract will contain a material that contains application service to be deployed.

Furthermore, it will contain materials representing the billable IaaS resources. If a fixed

duration is agreed, then the required amount can be added to the contract. For example,

for an application service that is running for one month with an instance with one virtual

CPU, a total of 720 units of CPU hour material would be added to its contract10. In a

BTO scenario, the next activity is to create a deployment sales order which contains the

application service to be deployed. It is inherited from the contract. The only part of

an application system used in this process is the sales module of the ERP system. The

provider’s capacity is not considered at this stage. As previously discussed, this is a valid

assumption considering the cloud computing paradigm with seemingly infinite resources

(Armbrust et al., 2010). The production capacity of the provider is constrained only by

the available IaaS capacity. The configuration models have infinite stock. A limited stock

could exist for licenses, domain names, or public IP11 addresses in some business cases.

Whether or not domain names and public IP addresses are required will also depend on how

the provider’s access point is designed. All customers could use a central access point.

Alternatively, customers or even users could be provided with their customized access

101 CPU * 24 hours * 30 days in a month = 720 CPU hours
11Internet protocol (IP)

86 An Information System Architecture for ASLPs

points. After the deployment sales order has been placed, the deployment and billing

process starts, which is depicted in Figure 5.19. In an ETO scenario, the engineering

process is performed before deployment and billing. It is described in the next section.

5.2.2 Engineering

The first activity of the engineering process is to create a special kind of sales order.

The engineering process is depicted in Figure 5.17. It is unknown at this point which
Engineering

Ap
pl

ic
at

io
n

la
nd

sc
ap

e
se

rv
ic

e
pr

ov
id

er

Ad
m

in
is

tr
at

io
n

Administration

Create ETO
sales order Procure licenses

for development
and testing

AB

Update contract
and ETO sales

order

D
ev

el
op

m
en

t

Development

Create software
design (h)

Software
design software

development
necessary?

Develop or
extend software

(h)

software ready
for deployment?

O
pe

ra
tio

ns

Operations

Develop
software conf.
model(s) (int.)

(h)

Devlop software
conf. model(s)

(ext.) (h)

Develop orch.
conf. model(s)

(h)
A

Develop infr.
conf. model(s)

(h)
C

Ar
ch

ite
ct

ur
e

Architecturecustomer
requirement

met?

Create solution
design (h)

which
models required?

Solution
design

Select software
(h)

Update material
master (h)

Perform
acceptance test

(h) test
succeeded?

B

new
models
required?

Customer
requirements

C

Sales module of ERP system

Production and logistics module of ERP system

yes

no

no

change or add model only

software
conf.
model

orchestration
conf. model

infrastructure
conf. model

no
yes

develop software

source
software

yes

no

ye
s

no

Figure 5.17: Engineering process.

application service will be sold. Therefore, not all of the required materials may be in

the material master. When the ETO sales order is created, a project is created with

it. This project is used to financially track the hours spent on developing the required

configuration models.

The h in parentheses shown in some of the activities in the process diagram abbrevia-

tes hours. It indicates that for those activities hours spent working on them by employees

are tracked.

After the ETO sales order has been created, a loop starts that tests if all customer

requirements have been met. In its first step, a solution design is created. This design

can be an architecture description of the service’s application system landscape, similar to

a computer-aided design model. Possibly, the customer is inquired again to gather more

Johannes Hintsch, M. Sc. 87

requirements data. Application system landscapes can be drafted based on the models

that are available in the ERP system’s material master. Also, it can be indicated that

existing models need to be modified or new ones created.

An example of a high-level part of architecture description is shown in Figure 5.18. In

this example, three software configuration models already exist: one for Apache HTTP12

Server13, one for the database server MySQL14, and one for the application software it-

self, in this case WordPress15. The application server and the database are placed onto

two instances that are defined to be bare metal, have a performance class L, and have

SLES as an operating system. The main task of this service is to create the orchestra-

tion configuration model, but also the database software configuration model needs to be

modified.

Figure 5.18: An architecture description for the fast content management system as a
UML deployment diagram.

When the solution design is created, it needs to be determined whether or not the

material master contains all configuration models required to deploy the required applica-

tion system landscape. Alternatives exist for developing the three kinds of configuration

model.

In the first alternative, software configuration models are required. Three subsequent

alternatives exist for continuing the process.

The first subsequent alternative is that either a new software program needs to be

developed or an existing one extended. For this, a software design is created. A model-

based approach for the software design document would be advisable (Bordeleau, 2014).

The models guiding and assisting the software development process (e.g., use case dia-

grams, class diagrams, or activity diagrams) could be used to inform the creation of the

configuration models (software, infrastructure, and orchestration configuration models)

12Hypertext Transfer Protocol (HTTP)
13https://httpd.apache.org/
14MySQL (https://www.mysql.com/) is an open source relational database management system that is

named after the Structured Query Language (SQL).
15https://wordpress.com/

https://httpd.apache.org/
https://www.mysql.com/
https://wordpress.com/

88 An Information System Architecture for ASLPs

(Herden, 2013, p. 61). Subsequently, one or more software configuration models are de-

veloped. These models are needed for deploying the software programs, but they are also

required for testing during the development phase. With these models, the production

landscape of the application service can be approximated so that it can even be used for

local testing by each developer (Spinellis, 2012). Subsequently, the software is developed.

Potentially, standard application software is enhanced, or an application software needs

to be developed from scratch. Different software engineering process models can be used

for development. The diagram indicates a sub-process. It is not further elaborated on be-

cause application software development is not in the thesis’ focus. DevOps-aligned models

are supported because configuration models to deploy development and test environments

for the software are available. Automated unit and integration tests, of course, also have

to be developed (Humble and Farley, 2010, p. 135). The developers decide whether or

not the software is ready to be deployed (Beyer et al., 2016). The previously developed

configuration model is then added to the material master.

The second subsequent alternative is that a software configuration model only needs

to be added or changed. For instance, a software configuration model for a standard

database software might be extended by a configuration option that exposes an existing,

but a previously unused feature of the database software. This path omits the steps of

software design creation and software development.

The third subsequent alternative is when software functionality is sourced. First,

software is selected from available vendors. When a vendor has been chosen, licenses are

procured to enable development and testing of the software programs. After that, software

configuration models are developed which are used to deploy the application software

in testing and production environments. This step is necessary as software companies

usually do not provide configuration models for their software. Therefore, the operations

professionals need to develop appropriate configuration models that make the sourced

software automatically deployable in their implementation of the ISAA. Again the new

model is added to the material master. The two other configuration model alternatives

are infrastructure and orchestration configuration models.

In the second alternative, an infrastructure configuration model might need to be

developed if a previously unused operating system needs to be deployed or if a new instance

performance class is required.

In the third alternative, an orchestration configuration model might need to be deve-

loped in a case as shown in the example of Figure 5.18. There, software and infrastructure

configuration models already existed but needed to be orchestrated for this new service.

An acceptance test is performed when no more new models need to be added. The

acceptance test can be performed in multiple stages. For example, first, an approximated

environment could be set up, and the final tests are executed in the production environment

(Everett and McLeod, 2007, p. 155). The final activity is to update the contract and

ETO sales order with the newly created application service. Corresponding billable IaaS

Johannes Hintsch, M. Sc. 89Deployment and billing

Ap
pl

ic
at

io
n

sy
st

em
 la

nd
sc

ap
e

pr
ov

id
er

Ad
m

in
is

tr
at

io
n

Administration

Create
production

order

Procure
production

licenses
Procure external

IaaS capacity

production
licenses

necessary?

external IaaS
capacity used?

Notify customer Bill customerRelease
production order

production order
confirmed

Customer

Production execution system

In a change the production order
contains:
- bill of materials
- production order ID
- old production order ID

In a first deployment the
production order contains:
- bill of materials
- production order ID

Production and logistics module of ERP system Sales module of ERP system

Confirmation contains:
- production order ID
- status
- access point

no

yes yes

no

Figure 5.19: Deployment and billing process.

resources are also added.

The next section will outline how deployment and billing are conducted.

5.2.3 Deployment and billing

The deployment and billing process is shown in Figure 5.19. In the first activity, a pro-

duction order is created based on a deployment sales order. It contains the application

service’s material which will be used as information for deploying the customer’s applica-

tion system landscape. If the deployment is a result of change the old production order ID

is also added to the production order for further processing by the production execution

system. In the second step, if production licenses are necessary, they are procured. License

procurement may not be necessary, even if proprietary software is used. For instance, the

provider could have a stock of licenses that are used for serving different customers over

time. In the third step, if external IaaS capacity is required, it is also procured. External

IaaS capacity may be required if the provider cannot meet a performance requirement for

a geographically dispersed application system landscape in the necessary way (Dikaiakos

et al., 2009). Internal orders track internal IaaS capacity consumption. Next, the appli-

cation system landscape is deployed into production by releasing the production order.

The release triggers the production and logistics module of the ERP system to send the

production order to the production execution system (the handling of production orders

by the PES will be discussed in section 5.4). Next, the customer is notified that the pur-

chased application service may be accessed. The last step is the billing of the customer.

This billing (cf. REQ P.5) is performed for the first deployment of the landscape. Set-up

costs or engineering costs are only billed once. The production execution system performs

continuous billing. The continuous billing by the PES will also be explained in more detail

in the next section. Adhering to the provisions made by Iveroth et al. (2013), the following

architecture decision is made.

90 An Information System Architecture for ASLPs

Architecture decision 14

Two styles of application service settlement shall be supported: pay-per-use and fixed

price regardless of volume.

Whereas the first alternative is often used in today’s cloud computing, the second alter-

native would be found in more traditional service models. However, also for the second

option, infrastructure usage limits can be placed.

In the next section, the operation phase of the application service will be described.

5.2.4 Operation

ITIL defines the following processes for the service operation phase: event management,

incident management, problem management, request fulfillment, and access management

(Cannon, 2011a, p. 57 - p. 118). Event management is concerned with monitoring the

status of IT services and their supporting configuration items. In incident management,

incidents such as “[...] unplanned interruptions to an IT service or reduction in the quality

of an IT service or a failure of a CI that has not yet impacted an IT service [...]” (Cannon,

2011a, p. 72) are managed throughout their lifecycle. Causes of incidents are problems,

which are managed by problem management. In request fulfillment, requests made, usually

by users, are tried to be answered in correspondence with the contract and SLA. Requests

can range from asking for a password reset to requiring completely or partially new services.

Finally, access management is dedicated to “[...] granting authorized users the right to

use a service, while preventing access to non-authorized users.” (Cannon, 2011a, p. 110).

These processes are often seen as the core of the IT service management processes (Marrone

et al., 2014). Therefore, they are also part of popular ITSM application software products

(Pink Elephant, 2017). As long as an application service is performing as required, no

action is necessary. However, incidents and requests can invoke changes or additions to

the customer’s application system landscape necessary. How such changes or additions

are handled in the ISAA is depicted in Figure 5.20.

All actions have to be authorized in the IT service management system. For example,

if the action is based on a service request by a user, it is assumed that this request has

been authorized in the IT service management system. It does not make sense to shift

all activities to the ERP system. The contract’s information can be integrated into the

IT service management system (e.g., via a role-based read-only web service) as defined in

architecture decision 3.

The first step after an incident or service request triggers the process is to decide

whether an application service addition or a change is required. If it is an addition, the

inquiry and order processing process will be passed through. If the addition is a service

that is isolated from an existing one and it is a mass-customizable BTO service it will

be treated as a BTO scenario (cf. Figure 5.16). In other cases, it is treated as an ETO

scenario. This applies, for example, if a new application service has to be integrated

with an existing service. If customer application service integration has not been planned,

Johannes Hintsch, M. Sc. 91Operation

Ap
pl

ic
at

io
n

sy
st

em
 la

nd
sc

ap
e

pr
ov

id
er

Ad
m

in
is

tr
at

io
n

Administration

addition
or change?

Inquiry & order
processing

Incident or
service request

problem or
service change
request?

parameter or
model change?

Cancel service
with repair order

Update contract

Create
deployment
sales order

Deployment and
billing

Notify customers

if added service is
isolated and BTO then
select BTO alternative,
else select ETO
alternative

Ar
ch

ite
ct

ur
e

Architecture

Change software
and

configuration
models

Change software
and

configuration
models

O
pe

ra
tio

ns

Operations

Full regression
testing (h) Customer-wide deployment (h)

Customer

IT service production systemIT service management system

Sales module of ERP system

model
change

service change request

problem

addition

parameter change

Figure 5.20: Operation phase.

customization and development of the corresponding configuration models and potentially

also a modification of software programs will usually be required.

If it is no addition, a change has to be made to an existing application service. Such

a change can be necessary because the user made an authorized service change request

or because a problem was identified that requires a fix. If a service change request is

made two further alternatives exist. The first alternative is that a parameter in a BTO

scenario is changed. In this case, the existing service is canceled with a return order.

The contract is then updated with the same application service, but newly parametrized.

Then a deployment sales order is created with the old production order ID which will be

forwarded to the new production order for deployment and billing in the next business

process.

If no parameter is changed, an actual model change is required, and the business

process change software and configuration models is run through (Figure 5.21). The next

steps are the same as those of the parameter change alternative. Managing the frequency

of such requests is essential because this may lead to a scattered service catalog since such

changed services have to be kept separate from their originals as those may still be in

operation elsewhere.

If a problem was identified in one of the configuration models, in software programs or

a combination of them, again, that software program and corresponding software models

need to be changed. As this may not be related to only one application service in pro-

92 An Information System Architecture for ASLPs

duction, a full regression testing across all deployed and affected application services and

their parametrizations is necessary. After that, the changed software and configuration

models are deployed customer-wide in the IT service production system. Customer-wide

deployment is not done via production orders as this is not related to individual contracts.

Changes to the landscapes also need to be recorded in the ITSM system’s CMDB. After

the deployment, customers have to be notified.

Figure 5.21 shows the subprocess in which software and configuration models are

changed. Again, for those activities time spent is recorded. The time is recorded in a

project for each material which is managed in the project management module of the

ERP system. The subprocess of changing software is not further discussed but can be

managed according to one of the software engineering process models that were discussed

in section 3.3.1.

Operation change

Ap
pl

ic
at

io
n

sy
st

em
 la

nd
sc

ap
e

pr
ov

id
er

D
ev

el
op

m
en

t

Development

Change software
(h)

Ar
ch

ite
ct

ur
e

Architecture

Update material
master (h)Test changes (h)

change
software?

change
orch. conf. model?

success?

change
soft. conf. model?

O
pe

ra
tio

ns

Operations

Change software
configuration

model (h)

Change orch.
configuration

model (h)

Production and logistics module of ERP system

no

ye
s

ye
s

no

ye
s

no

ye
s

no

Figure 5.21: Change of software and configuration models.

In the subprocess change software and configuration models, software is changed if

required. Subsequently, software and orchestration configuration models are also chan-

ged if required. Testing is performed as the last step and not individually after each

change action because changes usually rely on each other. The material master is modi-

fied according to the change if the test was successful. Changing the configuration of the

infrastructure configuration model in a running service is not possible because this would

mean that the affected instances would need to be exchanged. If such a change would be

Johannes Hintsch, M. Sc. 93

necessary a new application service with the required infrastructure configuration models

could be developed in an ETO scenario. Then a data migration could be performed bet-

ween both landscapes. A data migration, however, would be a manual service. It is also

possible to design services in such a way, using, for instance, rolling upgrades (Zhu et al.,

2015). This would be the scope of each application system landscape but is not by default

in scope in the ISAA.

The next section will discuss how the termination of application services is handled

in the ISAA.

5.2.5 Termination

“The company exists to make money.” – Goldratt (2004, p. 46)

Just like any company, the goal of an ASLP should usually be to prolong a lucrative

contract with a customer. Therefore, when a contract has a termination date, the customer

should be contacted by the provider regarding an extension of the contract. If the customer

agrees to an extension, the contract can be extended. If no extension is agreed upon the

contract will end as originally mandated.

Contract extension

Ad
m

in
is

tr
at

io
n

customer contract
expires in n days

Contact
customer
regarding
extension

extend contract?

Extend contract

Customer

Sales module of ERP system

ye
s

no

Figure 5.22: Contract handling before the termination date.

The technical termination of the application service and depletion of all related re-

sources is performed automatically by the production execution system. This will be

outlined in section 5.4.4.

In the next section, the application landscape system of the ISAA will be described

in detail. The description builds upon the presentation of the domain model in section

5.1.3.

5.3 Application system landscape

As discussed in the preliminary investigations, the primary application systems required

for producing application service are enterprise management, IT service management, and

94 An Information System Architecture for ASLPs

Enterprise

management

Pro-

duction

execution

Security &

audit

Systems

engineer-

ing

Monitoring &

analysis

IT service

management

IT service

production

Figure 5.23: Application system categories in ASLP’s landscapes.

IT service production systems. According to Hintsch et al. (2017) three further application

system categories exist. These may support the production indirectly. The three categories

originate from the application fields of security and compliance, systems engineering, and

of monitoring and analysis. Security and audit software “[keeps] the impact and occurrence

of information security incidents within the [acceptable] levels” (Lainhart et al., 2012, p.

113). They also facilitate internal and external security auditing. Systems engineering

software supports activities ranging from requirements engineering, modeling and design,

to construction and testing (Mobus and Kalton, 2015). Finally, monitoring and analysis

software records log and performance data about infrastructure, platforms, as well as

applications. Furthermore, means for analyzing the data to evaluate functional as well as

non-functional properties of the monitored IT systems are provided (Hintsch et al., 2017).

Figure 5.23 shows all system categories in the application system landscape of an ASLP.

Security and monitoring measures, implemented in application systems, are essential

to avoid unauthorized or hazardous activities and to react to outages quickly or to inves-

tigate systems. Depending on the nature of the business, different emphasis may be put

on security and monitoring.

An important step towards useful monitoring can already be made by collecting log

files centrally. Then, alerts are triggered if error messages of remote hosts start to occur.

Countermeasures can subsequently be taken. Central collection of log files is an area

to which configuration management software often is applied16. Implementations of the

ISAA could add configuration models for monitoring to the service BOM by default.

These monitoring models would command each customer instance to periodically report

its health status and that of its software stack to a central server. Various strategies can

16Syslog is the central logging system in the Linux OS. On the Puppet configuration repository 180 modules
were found dealing with Syslog on 25.02.2018 (https://forge.puppet.com/modules?q=syslog).

https://forge.puppet.com/modules?q=syslog

Johannes Hintsch, M. Sc. 95

be followed (Hernantes et al., 2015; Spring, 2011a,b).

Security and analysis tools may have no permanent integration with the rest of the

application systems. An example is a role-based access rights analysis. Here, low-level

access rights scattered across various systems can be extracted into file dumps and analyzed

in specific software. Permanent integration could be advantageous for some customers but

is not required in all circumstances (Fuchs and Pernul, 2013). Security and monitoring

systems are included, but will not further be discussed.

Figure 5.24 shows the systems of the application system landscape in a UML com-

ponent diagram. Offering and usage of interfaces are depicted. Almost all components

are executed on centrally managed hosts. One component, the integrated development

environment (IDE), is executed on the computers of the engineers who are responsible

for creating and maintaining the configuration models. An IDE belongs to the systems

engineering category. The IDE illustrates how new configuration models may be loaded

into the version control system via its write interface. From the version control system,

the configuration models are served to the other systems.

In addition to the centrally managed hosts that form the core of the provider’s ASL

and the IDE, three further components are included in the diagram. They represent the

critical components in a customer instance to deploy and change the customers’ applica-

tion services. The configuration management agent uses the operating system’s API to

configure the software on the instance. The package management system is used to gather

packages and install them if new software needs to be installed. All instances are handled

by an IaaS node controller of the physical host on which they are executed.

Software packages are loaded from a definitive media library (Rance, 2011, p. 99). The

definitive media library is a repository that stores different versions of software programs

(e.g., beta and stable). Software marked as stable by developers via flags in the version

control system may be sent to the definitive media library by the continuous integration

system if all automated tests have been successfully passed. The continuous integration

system also interfaces with the configuration management and IaaS system to deploy

landscapes into test environments.

The ERP system contains modules for project management, financing and accoun-

ting, production and logistics, sales, and human resources, as well for customization follo-

wing Gronau’s description (Gronau, 2010, p. 9). A project management module extends

Gronau’s description. The ERP system is the leading system to support the production

process. It communicates with the production execution system. This is necessary for

deploying the application services according to customer orders and also for initiating

requested changes. The PES and the ERP system communicate via their APIs.

The IT service management system interfaces with the ERP system. It may report

ticketing data back to the ERP system for billing and cost accounting purposes (cf. REQ

P.5). For example, user help desk activities, as supported by the ITSM system, may be

billed to the customer separately or be considered for internal cost accounting. Also, an

integration or synchronization of data on customers, the service catalog (material master),

96 An Information System Architecture for ASLPs

Figure 5.24: Application system landscape depicted in a UML component diagram.

and current contracts is advisable to facilitate efficient processes and consistent data (cf.

architecture decision 3 and section 3.2.2).

The IT service management system communicates directly with the IaaS master host

to retrieve information about the current IaaS node resource utilization for capacity mana-

gement. Capacity planning is performed outside the ERP system because the IaaS master

should make rapid, automatic adjustments for fluctuating demand (Mell and Grance,

2011). For on-premise hosting, spare capacities need to be maintained. Capacity planning

can be based on sales data from the ERP. Planning runs, however, are not performed

every time an application service is deployed. The costs for IaaS capacity can be distri-

buted across the customer base since IaaS capacity is highly standardized. Figure 5.12

shows the four types of IaaS resources. IaaS capacity planning can be decoupled from the

individual sales orders and production orders. The provider may have teams responsible

for infrastructure and applications, respectively. Therefore, as stated earlier, the focus of

the ISAA is on the application software on the software layer which is reasonable because

the infrastructure is increasingly becoming a commodity (Owens, 2010).

Reacting to changes in demand depends upon a company’s capability of monitoring

service usage, scaling the application system landscape effectively, and commanding suffi-

cient IaaS capacity. Therefore, the IaaS components of the IT service production system

can be maintained as an internal supplier with an infinite material stock. This internal

supplier is then only billed after the resources have been used. Subsequently, the infra-

structure department or an external provider can plan capacity. Historical monitoring

data may serve as the basis for planning (Gmach et al., 2007). The following architecture

decision reflects the treatment of infrastructure resources.

Johannes Hintsch, M. Sc. 97

Architecture decision 15

Infrastructure resources (CPU, memory, storage, and bandwidth hours) shall be tre-

ated as infinite. IaaS services are either operated in-house or sourced.

The IT service management system also uses the usage tracking API of the IaaS

master to retrieve utilization data. This data is integrated into the capacity management

process of the ITSM system. When new capacity is required in the form of new hardware

in an on-premise hosting scenario, this new hardware would be manually ordered from a

vendor. Hardware is ordered in bulk to be able to negotiate discounts. The ERP system’s

procurement functionality would be used for this purchase. This is the way Alpha manages

capacity. The monitoring and analysis system provides a monitoring API. This API is used

by all systems in the landscape to provide monitoring information centrally. As discussed

above, each customer’s instance can be induced by default configuration models to send its

logging information. Similarly, the input data for security and audit data is not explicitly

shown. This may come from the CMDB (Desai et al., 2006) or from directory information

systems that manage access authorization (Fuchs et al., 2011; Fuchs and Pernul, 2013). :

The production execution system interfaces with most other systems. It will be discussed

in the next section.

5.4 Production execution system

The production execution system mainly acts between the ERP system and the other

systems to orchestrate service production. Its system activity service deployment will be

described section 5.4.1, which is next. When a change to a landscape becomes necessary,

the PES directs this service change as presented in section 5.4.2. The system activity ser-

vice billing is described in section 5.4.3. If a service’s contract expires and is not extended

as discussed in section 5.2.5, the service will be retired, and the resources dismantled. The

system activity service termination is described in section 5.4.4. The production execu-

tion system needs to maintain data particularly for billing and for changing a service. The

corresponding data model is discussed in section 5.4.5.

5.4.1 System activity: Service deployment

Figure 5.25 illustrates the role of the PES when automatically deploying a new service.

In the first step, the PES receives the bill of materials and the production order identifier

from the ERP system’s production and logistics module. Subsequently, a unique identifier

for this service is generated. This is necessary to be able to associate different production

orders with the service in case it is changed in the course of its lifecycle. In the third

step, the version control system is queried for the configuration models contained in the

BOM, and they are retrieved. Then, in the fourth step, the PES posts the service’s

unique identifier, the retrieved orchestration configuration model, and potentially several

infrastructure configuration models to the IaaS master. The unique service identifier is

98 An Information System Architecture for ASLPs

also used by the IaaS master to identify the service throughout its lifecycle. The IaaS

master then spawns the instances as specified by the infrastructure configuration models

and sets up the network as defined in the orchestration configuration model. The PES gets

back a mapping in which different roles such as webserver or databaseserver are mapped

to the actual instance addresses that were provided by the IaaS system. This information

is required for configuring the software of the application service. The mapping between

roles and software configuration models is maintained in the orchestration configuration

models.

Figure 5.25: PES’s system activity service deployment.

In the fifth step, the configuration management master receives the unique service

identifier, the instances’ addresses, and the software configuration models that are used

to configure the application service’s software on each instance. Figure 5.26 describes in

more detail the steps that are taken by the configuration master and PES to configure

each instance.

In the sixth step, the user data will be retrieved. This data is stored in the database

of the PES where it can be accessed when the user is notified of the ensued service pro-

visioning. This data can, for instance, be shared via e-mail or a separate authorized web

service.

The seventh step is to update the CMDB of the IT service management system about

the newly deployed application service. This includes information about the instances on

the infrastructure layer, for example, size and addresses, as well as the information on the

software layer, for example, what applications are running on the instances.

In the eighth step, the contract, the contract identifier, as well as start and end time,

the interval length in which billing shall be conducted (e.g., monthly or yearly), and the

billing type (fixed billing or usage-based billing) are retrieved from the ERP system. This

data is then used to initiate the continuous billing for the application service. During the

continuous operation of the application service infrastructure costs are incurred. There-

fore, the infrastructure configuration models are required to determine, for fixed billing,

how many infrastructure hours need to be billed in a given billing interval.

Johannes Hintsch, M. Sc. 99

The final step of the deployment process is the confirmation of the production order

that the PES sends to the ERP system.

The configuration master authenticates each instance based on the address received

from the PES. Then the software configuration is posted to the configuration management

agent. The mapping of the instance and software configuration is performed based on the

role definition in the orchestration configuration model. Figure 5.26 displays components

that exist in each customer’s instance. In the third step, the configuration management

agent will use the operating system’s API to prompt the package management system to

install the software packages of the application service’s application software as defined by

the software configuration models.

Figure 5.26: Configuration of software on each instance.

In the next section, the change of a service will be described.

5.4.2 System activity: Service change

The system activity service change is depicted in Figure 5.27.

The ERP system starts the activity by posting the production order identifier, the

bill of materials, and the old production order identifier to the PES. The next step is to

update the connection between the service’s unique identifier and old production order

identifier with the new production order identifier.

In the third step, the new configuration models are retrieved from the version control

system. The fourth step sends the configuration models to the IaaS master in the same

way as it was done in the deployment step. Here, the service is updated as defined by the

orchestration model. For instance, the network structure might be changed, new instances

started, or new policies are configured such as those for scaling.

In the fifth step, the configuration master is updated with the new configuration

information. This includes potentially new instances that were added and needed to be

configured. However, also instances that were already deployed in the old production order

might be updated in their software configuration.

In the sixth step, the CMDB is updated with an entry for each instance including

again the service’s unique identifier, instance address, infrastructure configuration model,

and software configuration models. In the seventh step, the change is confirmed.

The next section will describe the system activity called service billing.

5.4.3 System activity: Service billing

Figure 5.28 illustrates how the PES initiates billing based on a fixed amount of IaaS

resources. As described in section 5.2.1, for example, an instance with one CPU would

100 An Information System Architecture for ASLPs

Figure 5.27: PES’s system activity service change.

consume a fixed amount of 720 CPU hours per month10. In the first step, the consumption

is calculated using the service’s unique identifier. Consumption can be represented as a

quadruple for all four billable IaaS resources. For the calculation, the billing interval

and the instances’ infrastructure configuration models are used. The consumption is then

used to create a sales order on the respective service’s contract. A sales order identifier

is received back from the sales module of the ERP system. In the third step, the sales

module is used again, to create and send out an invoice based on the acquired sales order

identifier.

Figure 5.28: PES’s system activity service billing (fixed).

Figure 5.29 illustrates how the PES initiates billing based on variable IaaS resource

consumption. In the first step, the consumption is gathered from the IaaS master. For

this, the start and end time for the necessary consumption calculation as well as the

service’s unique identifier are sent to the IaaS master. The second and third equal those

of the fixed billing system activity.

Figure 5.29: PES’s system activity service billing (based on usage).

The next section will describe how a service is terminated.

Johannes Hintsch, M. Sc. 101

5.4.4 System activity: Service termination

Figure 5.30 shows the system activity to terminate a service and the dismantling of its

resources. In the first step, the instances are backed up. These can be used to restore

the service. They can also be used to provide the customer with the data that was

produced over the run-time of the service. The second step is to terminate the instances

of that service using its unique identifier. The third step is to delete the service on the

configuration management master. In the fourth step, the service is deleted from the PES,

and in the fifth step, the service is marked as retired in the CMDB. Finally, the service’s

contract is reported to be terminated.

Figure 5.30: Service termination.

The next section will describe the data model of the PES.

5.4.5 Data model

Figure 5.31 shows UML class diagram. It represents the minimal set of information that

the PES needs to handle. It contains four classes: ApplicationService, Instance, Custo-

merData, and Contract.

For the users of the customer to be able to access the application services, they,

for example, need initial credentials. Also, specific addresses of the access point may be

required. To offer a wide variety of information to be stored, the CustomerData class

has the fields key and value. Depending on the service specificities, different keys (e.g.,

password, username, or URL17) and corresponding generated values instantiate these fields

in the database. Access to this data may be given to the customer when the first invoice

is created and sent out (cf. section 5.2.1).

For fixed billing, the Instance class has the fields instanceAddress and infraConfig-

Model. Based on this data, the consumption for fixed billing can be calculated based on

the infraConfigModel that is managed by the IaaS master.

The class ApplicationService itself contains, amongst the links to the other classes,

the fields serviceUID and productionOrderID that are used for managing the application

service across different production orders that may occur when the service is changed.

The contract class includes the fields contractID, startTime, endTime, billingInterval, and

billingType. All of this information are required for sales order and invoice creation.

17Uniform resource locator (URL)

102 An Information System Architecture for ASLPs

Figure 5.31: Model of the data handled by the PES.

The evaluation of this thesis will be presented in the next chapter.

Johannes Hintsch, M. Sc. 103

6 Evaluation

Final validity that design science artifacts achieve utility for humans or organizations

can only be achieved in naturalistic settings (Sonnenberg and vom Brocke, 2012; Hevner

et al., 2004). DSR produces prescriptive knowledge, and until this knowledge is applied

in practice, it is often assumed to have no truth-like value (Sonnenberg and vom Brocke,

2012). Artificial environments are used to evaluate this knowledge in its design stage. It

is difficult to craft artificial environments to resemble the real world exactly. Analytical,

experimental, testing, and descriptive evaluation methods (Hevner et al., 2004) all are

subject to this difficulty. Only observational evaluation methods including case and field

studies directly address the goal of final validity. Such studies must be carefully desig-

ned, may be expensive, and their cases must be carefully sampled (Eisenhardt, 1989).

Therefore, proving that a DSR artifact achieves utility (validation) can be challenging.

Consider the example of enterprise application systems that automatically adapt to

the stress levels of users: Adam et al. (2017) propose an approach of implementing such

systems to overcome a range of challenges ranging from technical feasibility to ethical

acceptability. They base their design on theoretical foundations and utilize results of

interviews and focus group discussions. However, they are not able to finally validate their

research. Therefore, they propose to use laboratory studies first and then later validate

their results with field studies. Because such studies are expensive, they are not performed

from the beginning. Their article communicates unproven prescriptive knowledge.

Several works from the three sets of related work also lack proven validity (cf. section

3.5.2). Ebert (2009) uses a prototypical implementation and scenarios to verify his concept

of transferring production planning and control to IT service providers. This approach is

also chosen by other authors of important related work (Wettinger et al., 2013; Kirschnick

et al., 2010; Mastelic et al., 2016).

For the artifact at hand, the ISAA, a case or field study evaluation would require

implementing the whole ISAA or parts of it with an ASLP. This would require a company

to be willing of implementing such a novel concept. Large and complex projects (Michel,

1998; Finney and Corbett, 2007) are required to implement ERP systems in companies.

Such a project would be beyond the scope of a thesis. There is no instance known to

the author where such an evaluation method was utilized to prove validity, considering

relevant related work (Ebert, 2009; Wettinger et al., 2013; Kirschnick et al., 2010; Mastelic

et al., 2016).

Nonetheless, the bespoken authors have identified research gaps and have built their

artifacts methodologically sound. Sonnenberg and vom Brocke (2012) argue that artifacts

104 An Information System Architecture for ASLPs

can have truth-like value in earlier design stages even if their validity is not finally proven,

for instance, if preliminary knowledge is derived from appropriate and validated theories.

To assist researchers to communicate their research in early design stages successfully,

Sonnenberg and vom Brocke (2012) have suggested a step-wise approach to evaluate DSR

artifacts. Table 6.1 displays these four evaluation steps with their input and output.

Step Input Output

EVAL 1 Problem statement and/or observa-
tion of a problem, research need, de-
sign objectives, design theory, exis-
ting solution to a practical problem

Justified problem statement, justified
research gap, justified design objecti-
ves

EVAL 2 Design specification, design objecti-
ves, stakeholders of the design spe-
cification, design tool and/or design
methodology

Validated design specification, justi-
fied design tool and/or methodology

EVAL 3 Instance of an artifact (prototype) Validated artifact instance in an ar-
tificial setting (proof of applicability)

EVAL 4 Instance of an artifact Validated artifact instance a natura-
listic setting (proof of usefulness)

Table 6.1: Four steps of DSR evaluation, adapted from Sonnenberg and vom Brocke
(2012).

In the first step, the relevance (Hevner et al., 2004) of the research project are evalu-

ated. Research problems are worked on either because previous literature did not address

them at all or because it did not address them sufficiently. Insufficient solutions can take

the form of existing DSR artifacts, or entirely new problems come from practice. Thus,

the research gap needs to be identified and justified. To design a solution to a problem,

objectives need to be defined that can be used to decide whether or not the solution suffi-

ciently solves a problem. Therefore, justified design objectives are the third output of the

first step.

Before the second evaluation step, a design specification has been created. Such a

specification has stakeholders, and a methodology or tool or a compilation of the two has

been devised to create the specification. The goal of this step is to validate the design

specification and justify the selection of design tool and methodology. Different criteria

such as simplicity, clarity, completeness, or level of detail are used in this evaluation step.

Methodologies for evaluation include logical reasoning, simulation, or benchmarking.

An instance of the artifact, a so-called prototype, exists when the third step of DSR

evaluation begins. The goal is to validate the artifact instance in an artificial setting.

Here, the applicability of the artifact to solve a specific problem is proven. Suitable

evaluation criteria in this step are, for example, feasibility, efficiency, or effectiveness.

Evaluation methodologies in this step are often centered around the prototype, including

a demonstration or experiment with the prototype, but also other approaches such as

Johannes Hintsch, M. Sc. 105

focus group discussions may be applicable.

In the fourth and final evaluation step, an instantiation of the artifact is validated

in a naturalistic setting. Here, the usefulness is proven. Different criteria such as fidelity

with real-world phenomena or impact on the environment and users of the artifact as well

as others can be used for evaluation. Methods in this step include, as discussed before,

case studies or surveys.

Table 6.2 lists which methods and criteria were used for evaluation of the ISAA.

Step Evaluation methods Evaluation criteria

EVAL 1 Study of the knowledge base and en-
vironment

Relevance

EVAL 2 Logical reasoning, demonstration Consistency, applicability, and adap-
tability

EVAL 3 Scenario-based descriptive evalua-
tion, functional (black box) testing,
expert evaluation

Fidelity with real world phenomena,
feasibility, utility

Table 6.2: Steps for evaluating the ISAA.

To conduct the first evaluation step, primarily, the knowledge base and environment

were studied (Hevner et al., 2004). Section 6.1 will outline that the research addressed a

relevant research problem.

In the second step, the architecture description of the ISAA is evaluated. It is pre-

liminarily shown that the artifact has the capability of reaching the research goal and

was soundly constructed. For this, logical reasoning and demonstration were employed as

methods. The architecture description was evaluated based on the criteria of consistency,

applicability and adaptability (Prat et al., 2015). The architecture consistency is elabora-

ted on based on the stringent derivation of architecture decisions from relevant rationale.

Applicability is demonstrated by instantiating the architecture description. Adaptability

is shown by demonstrating that the artifact can be used in scenarios that were not in the

central research scope. This is important to ensure broad applicability.

For the third step, the ISAA, based on the architecture description, was instantiated

into a prototype. The prototype verifies that the ISAA can technically be implemented.

As evaluation methods, scenario-based descriptive evaluation, functional (black box) tes-

ting, and expert interviews were used. Employed criteria are the architecture’s fidelity to

real-world phenomena, its feasibility of instantiating, and its utility. Mathematical proof-

ing is not conducted. Formalizations required for proofs would be infeasible (Hanappi

et al., 2016) because the ISAA consists of various components. Even segments of the ar-

chitecture would constitute a large number of variables. Therefore, such formal evaluation

methods are not implemented in favor of descriptive and testing methods. It is primarily

shown that the ISAA can be instantiated. Because so many components on different layers

are involved in the ISAA, the assembly of the prototype was not trivial. The architec-

ture’s fidelity to real-world phenomena is shown by testing it in selected real-world-ajar

106 An Information System Architecture for ASLPs

scenarios. Furthermore, feasibility tests regarding automation were conducted. Lastly, the

ISAA was evaluated based on expert interviews. As previously argued, an observational

evaluation method such as a case or field study (Hevner et al., 2004) would be challenging

to implement. This would require implementation in a real setting. Implementation of

the ISAA in a real organization would exceed the scope of the thesis. Therefore, the ex-

pert interview methodology is selected to validate the ISAA and results from the previous

evaluation steps. Experts were selected with a broad educational background to validate

the ISAA regarding its overall feasibility and utility.

6.1 Evaluation of relevance (EVAL 1)

Hevner et al. (2004) provides guidelines for conducting DSR: (1) Design as an artifact,

(2) problem relevance, (3) design evaluation, (4) research contributions, (5) research rigor,

(6) design as a search process, and (7) communication of research. Guideline 2 and 5,

addressing relevance and rigor, have been the object of some debate (Turner et al., 1991).

Particularly behavioral information systems research, where quantitative methods (e.g.,

statistics) and qualitative methods (e.g., single-case study) are used (Eisenhardt and Gra-

ebner, 2007) and sometimes are seen competitively, have discussed the balance between

rigor and problem relevance. Advocates of quantitative research methods (positivists)

may discard results of qualitative research methods (non-positivists) as unsound. Simi-

larly, as Sonnenberg and vom Brocke (2012) state, DSR often has a problem to state its

truth-like value. A balance between rigor and relevance is important. If rigor prevails,

design scientists are in danger of losing their raison d’être because artifacts for problems

without practical relevance are designed. If rigor is discarded, a researcher’s contribution

may be limited and unsound. Although DSR is described as a paradigm, it can also be

seen as a research process itself (Peffers et al., 2008). Adhering to the process by Peffers

et al. (2008) (identify problem & motivate, define objectives of a solution, design & deve-

lopment, demonstration & evaluation, and communication) exhibits some rigor. It aligns

the guidelines differently. DSR as a research process is a meta-level above actual research

methods such as prototyping or case study (Wilde and Hess, 2007). Such concrete infor-

mation systems research methods should also be applied so that a DSR project exhibits

rigor.

That efficient IT service provisioning is a relevant problem was addressed in chapter

1 (Guideline 2). The research gap was highlighted and outlined in chapter 3 (Guideline

4). In section 4.2, objectives were derived from the environment and the knowledge base.

Literature reviews (Hintsch, 2013; Hintsch and Turowski, 2013; Hintsch et al., 2016a) and

case studies (Hintsch et al., 2015b, 2016b) were conducted in order to produce data and

insights to develop these objectives (Guideline 5). The objectives guided the construction

of the artifact. Consequently, it is concluded that the problem statement, the research

gap, and the objectives are justified. They were derived methodologically and with reason.

In the next section, the consistency of the architecture construction will be discussed

based on the architecture decisions and their rationale.

Johannes Hintsch, M. Sc. 107

6.2 Validation of consistent architecture decisions (EVAL 2)

Consistency is important to avoid contradictions (Prat et al., 2015). If architecture des-

criptions are inconsistent and contradictory, choosing implementation alternatives may

be ambiguous, and the architecture’s instantiation will likely be ineffective or inefficient.

Methodologically, the architecture construction is aligned with standard 42000 by ISO/IE-

C/IEEE (2011). “Architecture rationale records explanation, justification or reasoning

about architecture decisions that have been made” (ISO/IEC/IEEE, 2011, p. 7). The

architecture decisions were developed throughout chapters 4 and 5, the preliminary inves-

tigation and the presentation of the ISAA. The architecture descriptions are put together

in Table 6.4. Their rationales are summarized in Table 6.5.

The architecture decisions made, have affected elements of the architecture descrip-

tion such as models on all layers of the architecture. Therefore, Table 6.3 provides an

overview of the affected parts. The mapping of decisions to parts is made on the level of

architecture layers. The ASLP business model (1), application service production process

(2), application system landscape (3), and production execution system (4) are aligned

with the following layers respectively (cf. Figure 5.3): business (1), process (2), inte-

gration (3), software (4), and infrastructure (5). Virtualization (5) is not a contribution

to the architecture, but its layer (infrastructure) certainly is affected by the architecture

decisions.

ID D
o
m

a
in

m
o
d

e
l

A
S

L
P

b
u

si
n

e
ss

m
o
d

e
l

A
p

p
li
c
a
ti

o
n

se
rv

ic
e

p
ro

d
u

c
ti

o
n

p
ro

c
e
ss

A
p

p
li
c
a
ti

o
n

sy
st

e
m

la
n

d
sc

a
p

e

P
ro

d
u

c
ti

o
n

e
x
e
c
u

ti
o
n

sy
st

e
m

V
ir

tu
a
li
z
a
ti

o
n

ID D
o
m

a
in

m
o
d

e
l

A
S

L
P

b
u

si
n

e
ss

m
o
d

e
l

A
p

p
li
c
a
ti

o
n

se
rv

ic
e

p
ro

d
u

c
ti

o
n

p
ro

c
e
ss

A
p

p
li
c
a
ti

o
n

sy
st

e
m

la
n

d
sc

a
p

e

P
ro

d
u

c
ti

o
n

e
x
e
c
u

ti
o
n

sy
st

e
m

V
ir

tu
a
li
z
a
ti

o
n

1 x x x 9 x x x
2 x x x 10 x x
3 x x 11 x x
4 x x x x x 12 x
5 x x x 13 x
6 x x x 14 x x
7 x 15 x
8 x x x

Table 6.3: Parts of the ISAA that are affected by the architecture decisions.

Various architecture decisions affect the domain model as it cross-cuts all layers. Only

those entities shown in the models in this thesis are considered here.

ADs 1, 2, and 8 affect the production process because they introduce different systems

that are used in the process. These ADs affect the ASL regarding what systems are in the

landscape. The selection of a standard ERP for manufacturers (AD 8) affects those two

108 An Information System Architecture for ASLPs

architecture parts because, for example, a production order is handled in the production

process. The ERP system’s module selection was also affected by AD 8.

ADs 3 and 5 affect the application system landscape. Although the ITSM and ITSP

systems are used in the production process, these decisions do not affect the process. AD

5 is the basis for using virtualization within the ISAA. Therefore, virtualization has to be

taken into account here.

AD 4 has consequences for all parts except the business model. It is the basis for

application service description and assembly in the ISAA. Thereby it affects the application

service production process and the parts that carry out deployment and operation (ASL,

PES, and virtualization) of application services.

The focus on ASLPs (cf. AD 6) affects, naturally, the business model and the appli-

cation service production process. For instance, the focus is put on the provisioning and

construction of ASLs rather than on software development.

AD 7 regarding the SLA only affects the domain model. There, the mapping to the

master data of the ERP system is discussed. This AD is then manifested in the prototype

for evaluation (cf. section 6.5.1).

The decision to introduce the PES (AD 9) affects the application system landscape

and the PES itself. The application service production process is not affected because,

from the process-perspective, the ERP system is handling all production relevant data.

The PES (e.g., depicted in Figure 5.19) is only exchanging data with the ERP system but

is not directly involved in the application service production process (cf. section 5.2), for

instance through a user interaction activity.

AD 11 is reflected in the domain model and the production process. The contract is

set into relation with other entities in the domain model and worked with in the production

process.

Finally, ADs 10, 12, 13, 14, and 15 affect the production process. AD 14 also affects

the PES because the different billing modalities need to be reflected by the PES. These

ADs are not reflected in the domain model as they affect the process directly.

This section has shown how the architecture decisions have affected the different

layers of the architecture. Every architecture decision has a rationale. The rationales are

displayed in Table 6.5. They transparently state, based on the requirements of section 4.2

and the presented literature, why the architecture decisions were made. The architecture

decisions were the primary guidelines for the construction of the ISAA. The described and

documented procedure is inline with the provisions made by the ISO/IEC/IEEE (2011).

Hence, here it is argued that the architecture decisions were consistently created based on

a state-of-the-art approach to then guide the construction of the ISAA.

In the next section, the exemplary application services that are used throughout the

rest of the evaluation are presented.

Johannes Hintsch, M. Sc. 109

ID Architecture decision

1 The ISAA’s application system landscape shall comprise three major system
categories: enterprise management, IT service management, and IT service pro-
duction.

2 An enterprise management system shall be the leading application system within
the ISAA’s application system landscape.

3 Ticketing and consumption data shall be fed back to the enterprise management
system by the IT service management and IT service production systems. Rele-
vant data such as contractual data or structural application service information
can be looked up in or integrated from the ERP system.

4 Operations automation, in the ISAA, shall be based upon model-based configu-
ration management.

5 The ISAA’s application system landscape production shall be supported by on-
premise or sourced infrastructure as a service.

6 The ISAA shall primarily be designed for application system landscape providers.
7 One or no service level agreements shall exist for each application service. In the

ISAA, service level agreements only represent the agreed upon service level that
pertains to service quality indicators such as availability or maximum response
time.

8 A standard ERP for manufacturers system shall be used as the enterprise mana-
gement system.

9 A production execution system shall act as an intermediary between the three the
ERP system, the IT service management system, and the IT service production
system. The production execution system shall be implemented separately from
the ERP system.

10 Application services shall be provided in two scenarios. First, if customers have
particular requirements that cannot be served based on the existing configura-
tion models, the engineer-to-order scenario applies. Secondly, in cases where
customers can be served from the existing portfolio, the build-to-order scenario
applies.

11 The duration of an application service shall be modeled in a contract.
12 The high-level application service production process shall consist out of the

following more fine-grained business processes: Inquiry and order processing,
engineering, deployment and billing, operation, and termination.

13 The application service production process shall have the roles of administration,
architecture, development, and operations.

14 Two styles of application service settlement shall be supported: pay-per-use and
fixed price regardless of volume.

15 Infrastructure resources (CPU, memory, storage, and bandwidth hours) shall be
treated as infinite. IaaS services are either operated in-house or sourced.

Table 6.4: Architecture decisions.

110 An Information System Architecture for ASLPs

ID Rationale

1 ASL should reflect practical realities (REQ R.3). ASLP business model requires
three system categories.

2 Maintain full structure and production data of the application services in the
system for billing and financial accounting (REQ P.5) as well as KPI-based ma-
nagement (REQ R.2).

3 Ticketing and consumption data originates in ITSM and ITSP systems. Data
has to be sent to ERP system for full-service cost calculation (REQ P.5).

4 Model-based configuration management covers relevant layers of IT stack. In
contrast to container-based management, it closer adheres to REQ R.3 (integra-
tion with existing technology stack).

5 Little differentiation may be achieved with infrastructure management. High
degree of automation is necessary (REQ P.1).

6 Narrowing the scope to test Hypotheses 1 and 2.
7 SLA needs to be considered (REQ C.1). Proposed solution reflects indicators

used by cases Alpha and Beta.
8 Architecture decision adheres to manufacturing analogy (REQ R.4).
9 Production in ASL needs to be orchestrated and automated (cf. REQ P.1).

External component (from ERP system) should be more cost efficient as existing
interfaces for manufacturing execution can be used. PES development and ERP
system customization can be independent.

10 Depending on specific business model, ETO scenarios might occur (REQ R.1
and S.1). Companies may economically be compelled to serve specific customer
requests.

11 System needs to be aware of service duration (REQ C.1). The production order is
not used map duration to support standard KPI-based management functionality
of ERP system (REQ P.2).

12 Process is derived from standard order-to-cash process (REQ P.4), SCOR refe-
rence model (Hochstein and Uebernickel, 2006), and ITIL (de-facto ITSM stan-
dard). Core production steps are considered (REQ P.3, P.4, and P.5). Pre-sales
activities such as marketing are not included.

13 Reduced set of basic roles and aligned with DevOps (cf. section 3.3.1).
14 Extremes of pricing formula after Iveroth et al. (2013) are supported (REQ P.5).
15 Separation of ASL provisioning from infrastructure (AD 5). Application services

just consume infrastructure resources. Separation of concerns of software and
infrastructure provisioning.

Table 6.5: Rationales for architecture decisions (ADs are represented by ID).

Johannes Hintsch, M. Sc. 111

6.3 Exemplary application services for the evaluation
(scenarios)

The ISAA supports the production or application services in two main scenarios: build-

to-order and engineer-to-order. In BTO scenarios, on the one hand, customers are served

standard application system landscapes that vary only in their parametrization. Applica-

tion services provided in ETO scenarios, on the other hand, are characterized by a high

degree of individuality. For instance, new configuration models that previously had not ex-

isted in the provider’s service catalog may have to be created. Table 6.6 gives an overview

of the three exemplary services.

Service Type Description

Remote desktop BTO This service provides the customer’s users with the means
to access dedicated desktops via an access point that also
acts as the web-based client.

SAP ERP BTO This service provides the customer with access to a full
installation of a pre-configured ERP system from the soft-
ware vendor SAP.

CMS ETO Web applications may have different architectural requi-
rements. With this service, the provider can engineer web
applications serving various needs.

Table 6.6: The three application services used throughout the evaluation.

In a remote desktop service offering, the provider operates instances that contain

customer-required application software. Users can access the instances with low-cost har-

dware (e.g., thin-clients) instead of requiring fully-equipped workstations. Access is avai-

lable from any location with sufficient network bandwidth (Deboosere et al., 2012; Song

et al., 2017).

Typically, IT departments or internal IT service providers are responsible for ma-

naging the desktop computers of their companies’ employees (Dernbecher et al., 2013).

Remote desktop services have been utilized long before cloud computing became popular

because of centralized management’s advantages. For instance, Citrix-based terminal ser-

vices have been used by companies since the 1990s (Wikipedia, 2003). With a focus on

resource sharing in cloud computing, operating remote desktop services for customers that

are dispersed geographically can also be appealing. In such a case, work-loads differ ba-

sed on the working-hours of customers in different geographical locations. Consequently,

work-loads can be managed and overall energy consumption and maintenance effort be

reduced. Amazon has launched its remote desktop service offering in 2014 (Perez, 2014).

Similarly, Gamma plans to introduce such a service in addition to its primary enterprise

application services. The selling proposition is to ease the effort customers have in prepa-

ring their computers for the training programmes offered by Gamma. Consequently, the

remote desktop service may be offered in different configurations regarding its vertical and

112 An Information System Architecture for ASLPs

horizontal scale as well as its application software configuration. A remote desktop service

is based on an application system landscape although it is not comparable with enterprise

application software systems such as ERP system concerning complexity.

The second BTO service is an ERP hosting service. Larger organizations typically

use such application software, but also small and medium-sized ones (Klaus et al., 2000).

As it is the backbone of many companies’ operations, the ERP system’s operation can be

demanding concerning maintaining acceptable performance and availability rates. Many

internal IT service providers have teams that specialize in the company’s ERP system. In

the case of SAP, large firms often have established so-called SAP competence centers where

ERP knowledge is concentrated among a small group of people (Kræmmergaard and Rose,

2002). Concerning outsourcing, several ASLPs provide ERP-featuring application system

landscapes to their customers. Among them are companies like ITtelligence, Accenture,

or IBM, but also the three company cases Alpha, Beta, and Gamma of this thesis. In the

evaluation, the ERP hosting service is selected to investigate if a more complex application

software can be handled within the architecture.

The third service used for evaluation is a content management system, which was

used in the examples throughout the previous chapter. Content management systems

often are the basis for corporate websites (Grossniklaus and Norrie, 2002). In addition to

the content presentation, they feature shopping modules and are often also integrated with

other application systems such as web shops or back-office databases (Grossniklaus and

Norrie, 2002). It is used to demonstrate how the architecture can support ETO scenarios.

Throughout the next sections, these services will be used as examples. The next

section will validate the applicability and adaptability of the architecture description.

6.4 Validation of applicability and adaptability of architecture
(EVAL 2)

The ISAA was described in chapter 5. The main description components are the domain

model class diagrams, the production process diagrams, as well as the component, commu-

nication, and class diagrams describing the application system landscape and production

execution system.

All but the domain model class diagrams describe the processes supported by the

application systems and the application system landscape of the ISAA. Therefore, the

evaluation of the process as well as the application system landscape will be performed

based on the prototype. Consequently, this section will be restricted to validate the domain

model regarding applicability and robustness. As the domain model is the basis for the

whole architecture, its evaluation regarding applicability and robustness should also have

validity for the architecture as a whole.

Based on architecture decision 4 model-based configuration management was se-

lected as a basis for construction of the ISAA. This decision makes it questionable if

the ISAA could also be used when approaches such as container-based virtualization are

Johannes Hintsch, M. Sc. 113

used. Container-based virtualization combined with orchestration frameworks is appea-

ling as it promises easy portability and scalability of application services (Pahl, 2015).

Additionally, the ASLP business model, as defined in this thesis, is focused on providing

full application system landscapes for each customer. Multi-tenancy exists on the infra-

structure layer as multiple customers or tenants share the same physical resources such as

networking equipment or storage abstracted through virtualization. However, as software

as a service is a prominent service model (Anderson et al., 2013), multi-tenancy on the

application layer should also be supported by the architecture.

The domain model has similarities to a meta-model for domain-specific languages.

Evans and Kent (1999) suggest devising “[...] object diagrams, snapshots, that the model

must/must-not accept” to test meta-models. This is done to demonstrate how application

services can be described within the architecture’s scope.

Based on object diagrams, an application service will be described in section 6.4.1.

It shows the applicability of the architecture to a specific service on all relevant layers.

Sections 6.4.1 and 6.4.2 will evaluate the capability of the ISAA to process container-

based and multi-tenant application services. These sections validate that the ISAA can

be adapted to different problems than those originally anticipated.

6.4.1 Model-based application services

The domain model describes application service production on all layers of the information

system. A possible state of the business layer is depicted by the object diagram in Figure

6.1.

Figure 6.1: Business entities of an exemplary CMS service.

The model-based application service presented in this section is the content manage-

ment service already discussed in the previous sections. It is based on the frequently used

114 An Information System Architecture for ASLPs

software stack comprising the Linux operating system, Apache HTTP Server, M ySQL

database management system, and PHP1 programming language. This stack is known by

the acronym LAMP. Based on the LAMP stack the web blogging software Wordpress is

configured, which is frequently not only used for blogging, but for CMS. The combination

of infrastructure, software, and orchestration configuration models that define this service

are depicted in Figure 6.2.

The application service Wordpress on LAMP uses five software configuration mo-

dels. These include two libraries that provide supporting configuration mechanisms to the

software configuration models for the Apache HTTP Server and the MySQL database ma-

nagement system. The vendor of Puppet supplies all four of those models. For Wordpress

itself, a popular community configuration model is selected (hunner-wordpress). All mo-

dules are available on the repository PuppetForge2. The orchestration configuration model

specifies which software configuration models are used to deploy the respective software on

the database instance and the web-server instance. The same class is instantiated twice

because the objects serve different roles. However, in cases of horizontally scaling, one

object could be used while adding the scaling amount to the bill of materials. This is

displayed in Figure 6.11. In addition to the configuration models, a standard service level

SLA is contained for this service.

Figure 6.2: Defining models of the content management service.

Figure 6.3 displays a state in which the software configuration model puppetlabs-

apache has been used to configure the software Apache HTTP Server. It only shows an

extract. Specifically, it shows that the model provides two configuration options. The first

is used to install the corresponding operating system package through the package handling

utility APT. The second option is used to set up a virtual host on the standard HTTP port

80 for serving incoming requests. The configuration management agent induces the two

produced software configuration models. They contribute to the instance’s state of being

1PHP: Hypertext Preprocessor (PHP)
2https://forge.puppet.com/

https://forge.puppet.com/

Johannes Hintsch, M. Sc. 115

deployed, with the Apache HTTP Server running, and listening for incoming requests.

Figure 6.3: State induced with software configuration models (extract).

Figure 6.4 displays an extract of the objects when then the service is being deployed

on the infrastructure layer. Two instances are required: one for the database and one for

the web server. In the shown extract, the web server has not been fully built yet, as its

instance lifecycle state is BUILDING. In contrast, the database instance has already been

build, and its lifecycle state is ACTIVE. The object diagram furthermore shows the virtual

hardware configuration of both instances as defined by their infrastructure configuration

models. The instances are hosted on the IaaS node for which the hardware configuration

is also specified.

Figure 6.4: State induced with infrastructure configuration models (extract).

116 An Information System Architecture for ASLPs

Within this section, it was shown that the architecture’s domain model could be used

to describe application services on all layers. In the next two sections, two modifications to

the made architecture decisions will be made and tested how this affects the architecture’s

ability to support respective landscapes.

6.4.2 Container-based virtualization

As stated, container-based virtualization has several advantages. However, architecture

decision 4 mandated the use of model-based configuration management as the basis for

the construction of the ISAA. Therefore, it should be tested if the operations automation

approach of container-based virtualization is compatible with the architecture.

Figure 6.5 again displays a sample state of an application service that was deployed.

Figure 6.5: Container-based application service.

For the container-based operations automation, the content management service can

be defined with only three configuration models: an orchestration and two infrastructure

configuration models. Containers do not include a full operating system. In contrast to

lightly baked virtual machine images, they contain the completely preconfigured stack of

application software. Therefore, no software configuration models are necessary in this

case. Nonetheless, the application service can be fully described with this approach. For

instance, the image that includes the content management system contains preconfigured

versions of the Apache HTTP Server, Wordpress, and the PHP runtime. The configu-

ration model, which in this case only defines the image, describes the instance. When

spawned, the instance offers the same functionality as described in Figures 6.4 and 6.3.

The equivalent to the configuration management agent, for container-based virtualization,

is not part of the domain model, but could easily be added.

In the next section, the supportability of multi-tenant application services is tested.

Johannes Hintsch, M. Sc. 117

6.4.3 Multi-tenant application services

Figure 6.6 illustrates the way the architecture can be used to provide multi-tenant ap-

plication services. The figure has four quadrants based on two dimensions. Horizontally,

application system landscape production, as mainly discussed in the ISAA, and applica-

tion service production with multi-tenancy above the infrastructure layer are discerned.

Vertically, domain model instances and ERP master data instances are differentiated. This

mapping is presented to illustrate the built-in realization of multi-tenancy of application

software like ERP software can be modeled in the ISAA. The ERP system’s master data

is crucial here.

Figure 6.6: Multi-tenant application service.

The multi-tenant service is based on a SAP ERP full system service (lower left qua-

drant). The service, as depicted, is in the state of client configured for access (upper left

quadrant). As built-in multi-tenancy, clients are used in ERP systems to logically sepa-

rate organizational entities such as company branches or different companies in one ERP

system (Gronau, 2010, p. 389). The state, in this case, depends on the software configura-

tion option SAP ERP client access (upper right quadrant). It belongs to the multi-tenant

application service SAP ERP client service. Within the ASLP’s ERP system this is map-

ped to the corresponding master data instances. However, the production order does not

relate to the usual manufacturing equipment (ASLP’s core IT service production systems),

but to SAP ERP full system.

This mapping could be used to operate multi-tenant services for several customers,

but based on one ERP system.

118 An Information System Architecture for ASLPs

6.4.4 Summary

This section has demonstrated that the domain model can describe different kinds of

application services. This includes application services for which the ISAA is designed:

those supported by model-based configuration management exhibiting multi-tenancy only

on the infrastructure layer. However, also container-based application system landscapes

can be defined. Specifically, orchestration and infrastructure configuration models are

required for container-based application system landscapes. Small changes to the domain

model would have to be made to reflect container management systems. Also, multi-tenant

application services can be modeled if the application software supports multi-tenancy.

Customers could require matching consultancy service, for example, to customize

their ERP system. Such services could be represented as finished products in the ERP

system for instance as consultant hours. This practice is followed by personal IT service

providers, whose representatives were interviewed as part of the case study described in

section 2.1.

The next section will describe the prototype-based evaluation.

6.5 Evaluation based on prototype (EVAL 3)

A prototype was developed to verify the information system architecture. It is used to

verify that the proposed application system landscape is implementable and that the

processes can be executed as described. Furthermore, the prototype is used to investigate

if the proposed automation is feasible with respect to cost and time savings. Also, using

it with three different application services, the ISAA’s fidelity with real-world phenomena

is tested.

6.5.1 Prototype

The development of the prototype started in June 2014. This first version was used

in the evaluation of the presented first version of the architecture (Hintsch et al., 2015c).

Development of the second version started in 2016. While the first version of the prototype

focused on the deployment step and used a custom XML3-based mechanism to transport

data from the ERP system to the ITSP system, the second prototype supports the full

process and uses almost exclusively standard SAP ERP customization templates.

6.5.1.1 IT system landscape

Figure 6.7 depicts its IT system landscape in an UML deployment diagram. SAP ERP

was used as an ERP system for manufacturing. The used ERP client was pre-customized

with an educational company dataset for manufacturing4. The client is running in an

ERP system instance on a virtualized host. The system contains the depicted business

modules, analog to Gronau’s Gronau (2010, pp. 9–11) generic ERP architecture.

3eXtensible Markup Language (XML)
4Global Bike, Inc. (GBI) is a fictional company used for ERP system-based education (Weidner, 2012).

Johannes Hintsch, M. Sc. 119

The ERP client’s customization was extended. First, the IT products, application

services, and associated master data were added. In order to be able to maintain versi-

oning data for the configuration models in the material master, the material master was

extended. Remote function call routines were developed in order to be able to extract the

data from the ERP system.

SAP provides several customization templates to its customers in order adapt the

system. Various industry-specific and cross-industry customization scenarios are provided.

For the ISAA prototype, three primary customization scenarios were realized: To be able

to implement the ETO scenarios of the ISAA, an ETO configuration template (SAP SE,

2014b) and several base templates were implemented. Similarly, for the BTO scenario,

a corresponding template was implemented (SAP SE, 2015a). The interface between the

SAP ERP system and the PES is based on a manufacturing execution integration scenario

(SAP SE, 2014a).

Figure 6.7: Application system landscape of the prototype in a UML deployment diagram.

OpenStack, version 12, was used as the IaaS software. OpenStack was upgraded once

during the prototype development in 2015 due to stability issues. Version 12 was the then

current version. The key components necessary to implement the architecture were pre-

sent in version 12. Therefore, no further upgrade was performed. Contrary to production

setups, a single physical host was used to deploy OpenStack for the prototype. Therefore,

the IaaS master and IaaS node shared the same host. The physical host was a server

120 An Information System Architecture for ASLPs

blade with four Intel Xeon CPUs, 128 GB5 of main memory, 7.2 TB6 of serial attached

SCSI7 storage, and 1.6 TB of solid-state disk storage. OpenStack consists of core modules

and optional modules. The following core modules were used for the prototype. Open-

Stack Nova was used for managing the hypervisor that runs the virtual instances, which

in this case was the Kernel-based Virtual Machine Hypervisor. Nova uses a virtualization

library called Libvirt to communicate with this hypervisor. Neutron manages the virtual

networks. Keystone is OpenStack’s identity service, and Glance is primarily responsible

for storing the instances’ images. Furthermore, the prototype installation contained three

optional modules: Heat, for orchestration, Ceilometer, for monitoring, and Horizon, for

providing a web interface for user interaction. In addition to managing and hosting the

customer instances that form the infrastructure basis for the customers’ application servi-

ces, OpenStack instances are also used to host the PES, which will be discussed in section

6.5.1.2. Also, a virtualized repository host was included that contains the version control

system GitLab community edition.

Two components from the public internet were part of the landscape. One was the

software package repository of Ubuntu. Ubuntu was used as one important operating

system throughout the prototype. In production set-ups, a local package repository may

be used to avoid network problems and to control which package versions are in the

repository. Configuration models were loaded from puppetforge.com and a local version

control system.

Three computer configurations are suggested to support the different roles (adminis-

tration, architecture, development, and operation) in the prototype. To conduct the tasks

of the administration, the SAP Graphical U ser I nterface suffices. It allows to connect to

the SAP ERP system and perform all necessary steps to complete the designated tasks.

The architect computer has the ASL modeler for architecting application system lands-

capes. This software will be described in more detail in section 6.5.1.4, in addition to

being able to connect to the SAP ERP system. Lastly, the operator and developer use

computers with the so-called ISAA DevOps stack. It contains a desktop hypervisor and

management software for running virtualized approximations of production application

system landscapes for testing and development. In addition, the IDE Eclipse is included

with add-ons, such as the ASL modeler. A client of the version control system Git, as well

as the SAP Graphical U ser I nterface, were also included.

It was renounced to include a continuous integration system into the prototype. Its

feasibility is prominently shown (Humble and Farley, 2010; Ebert et al., 2016). Also, as

not in primary focus, a monitoring and a security system were not included (cf. section

5.3).

5Gigabyte (GB)
6Terabyte (TB)
7Small Computer System Interface (SCSI)

puppetforge.com

Johannes Hintsch, M. Sc. 121

6.5.1.2 Production execution system

The PES was developed in Java. To provide the PE API to the ERP system, the SAP

Java IDoc Class Library 3.0 was utilized. Production orders are sent in the IDoc format

to the PES. For the production execution system to use the ERP API, the SAP Java

Connector 3.0 was implemented. It allows to execute remote function calls on the SAP

ERP system.

Shell scripts were used to communicate with the Puppet master, to control Heat,

the orchestration module of OpenStack, to interact with Ceilometer, the metering module

of OpenStack, and to load configuration models from the version control system. An

interface was programmed to integrate them into the otherwise Java-programmed PES.

Update contracts

Get all contracts with

fixed billing

<<iterative>>

Fixed billing

Get all contracts with

usage based billing

Get all terminating

contracts

Usage based billing Terminate service

<<iterative>> <<iterative>>

[contractID] [contractID] [contractID]

Figure 6.8: Thread starting billing activities.

The PES will react to incoming production orders. However, it also will periodically

run the thread displayed in Figure 6.8 for conducting billing activities. The first step

is to iterate through all contracts that are marked as fixed billing. A custom text field

of the contract master data is used to differentiate fixed billing from usage-based billing

contracts. When all contracts in the particular interval have been billed as required,

the thread continues. All usage-based contracts are iterated, and the instances’ usage is

retrieved via the interface from Ceilometer. In the last step, all terminating contracts are

retrieved. Next, they are iterated, and each one is terminated.

6.5.1.3 Exemplary application services

Table 6.7 shows which software was used to implement each of the application services.

For the remote desktop service, the software Guacamole was used. Guacamole8 offers

a client based on Hypertext Markup Language 5 to access desktop sessions remotely

via different protocols such as Remote Desktop Protocol or Virtual Network Computing.

Guacamole has dependencies to the MySQL database management system and the Apache

8http://guacamole.incubator.apache.org/

http://guacamole.incubator.apache.org/

122 An Information System Architecture for ASLPs

Tomcat application server, also for proxying connections over port 80, Apache HTTP

Server was used. For the prototype, the Remote Desktop Protocol was selected, as the

client machines ran with Windows Server 2012. Furthermore, some other minor dependent

software packages were used. An Ubuntu Server 14.04 LTS9 image was utilized to run the

server instance that acts as the service’s access point. On all of the Windows clients, the

office suite LibreOffice is installed. Table C.12 shows the structure of configuration models

of this service. Two configuration models are used for the infrastructure. For the database,

application and HTTP servers, software configuration models from puppetforge.com were

used. One orchestration configuration model orchestrates the whole service. For the

central server, one software configuration model was developed as well as for the Windows

clients. The following listing shows a part of the orchestration configuration model. The

parameters CLIENTCOUNT and CLIENTSIZE are used to define how many clients and

of which size are deployed for a service instance respectively.

parameters:

CLIENTCOUNT:

type: number

label: Client count

description: Number of clients for the remote desktop

default: 2

CLIENTSIZE:

type: string

label: Client size

description: Size of the clients

default: m1.small

Application
service

Main software Images

Remote desktop Guacamole, MySQL, Apache
HTTP Server, Apache Tomcat,
LibreOffice, and other dependen-
cies

Ubuntu Server 14.04 LTS
(Trusty Tahr), Windows Server
2012

SAP ERP SAP ERP 6.04 SP 13 NetWeaver
7.01 SP 13 with GBI 2.20r001

SUSE Linux Enterprise 11 SP3
with SAP dependencies

CMS Apache HTTP Server, MySQL,
Wordpress, and other dependen-
cies

Ubuntu Server 14.04 LTS
(Trusty Tahr)

Table 6.7: Technical implementation of the application services.

9Long time support (LTS)

puppetforge.com

Johannes Hintsch, M. Sc. 123

SAP ERP is restricted to specific operating systems. Therefore, a preconfigured

image of SUSE Linux Enterprise 11 SP3 was created using SuseStudio10. The software

configuration model installs SAP ERP using the system copy mode and unattended version

of the SAP installation software (SAP SE, 2017a). The following listing shows an excerpt

from the software configuration model. It is written in Puppet’s domain-specific language.

It shows the directory initialization that is necessary to commence with the installation

of the ERP software.

$sap_dirs = [’/sapinst/sapdb’, ’/sapinst/sapmnt’, ’/sapinst/usrsap’,]

file { $sap_dirs :

ensure => directory,

owner => ’root’,

group => ’root’,

mode => ’755’,

require => Exec[’setup_vdb’]

}

The start configuration of the content management service that is engineered to order

in the following section has repeatedly been used as an example throughout the thesis.

All software configuration models are loaded from puppetforge.com. The orchestration

configuration model combines them to deploy the service. In the following listing, the

configuration of the service’s access point is defined. The triple bracket enclosed word

is used to insert parameters that are in this case retrieved from the IaaS master upon

spawning the instances.

apache::vhost { ’<<<access_point>>>’:

port => ’80’,

servername => ’<<<access_point>>>’,

docroot => ’/var/www/wordpress’,

}

6.5.1.4 Computer aided configuration model generation

A tool was created to facilitate the creation of a landscape solution design at the beginning

of the engineering phase. It is based on the integrated development environment Eclipse

and the modeling Plugin Papyrus. Figure 6.9 shows an example in which the content

management service is modeled.

Architects can use the application system landscape modeler (ASL modeler) to create

a deployment diagram of the service’s landscape. The ASL modeler interfaces with the

SAP ERP system to display the available software and infrastructure configuration models.

Architects can view details for each model such as pricing information. The deployment

diagrams are extended by UML stereotypes (Oestereich and Scheithauer, 2012, p. 292).

This enables the definition of arbitrary attributes within the model.

10https://susestudio.com/

puppetforge.com
https://susestudio.com/

124 An Information System Architecture for ASLPs

Figure 6.9: Application system landscape modeller.

After the solution design has been drafted, the model can be used for different purpo-

ses. The first purpose is to communicate with the customer if the suggested solution adhe-

res to his requirements. The second purpose is to derive initial price estimates. Because all

data is retrieved from the ERP system, pricing data can also be derived. Consequently,

price estimates can be made based on the available configuration models. Finally, the

deployment diagrams can be used as a starting point for the orchestration configuration

models. Because the deployment diagrams are encoded as standard XML, they can be

manipulated easily. For the ASL modeler, language transformations11 from the XML-

representation of the UML deployment diagram into the Heat and Puppet orchestration

configuration models were used that are required for orchestration in the prototype.

In the following, process run-throughs are described, which were performed with the

prototype.

6.5.2 The production process in different variations and phases

For the production process run-throughs, each phase is included, and the ETO and BTO

scenarios are differentiated. Tables are used to list the process steps. The first process

description includes a table within this section. The other tables can be found in the

appendix. Here, those run-throughs are described only in the text as the tables are

somewhat repetitive.

6.5.2.1 Full build-to-order

The build-to-order process starts with gathering the customer requirements. For the

prototype, the customer requirements were implicitly gathered and directly recorded in

the ERP system. Table 6.8 displays the phases and activities that are performed to

produce the service. The table also shows the application system context and the nature

of the activity: namely one with human interaction or system activity.

11The transformation was based on the eXtensible Stylesheet Language.

Johannes Hintsch, M. Sc. 125

Business pro-
cess

Activity System
context

Activity
type

Inquiry and or-
der processing

[Incoming customer inquiry]

Gather customer requirements SAP-VA11 HI
Create contract, with configuration for five
small clients of remote desktop service

SAP-VA41 HI

Create deployment sales order SAP-VA01 HI

Deployment Create production order SAP-CO01 HI
Release production order SAP-CO02 HI
Service deployment PES SYS
[Production order confirmation]

Operation {Service operating} ITSP sys-
tems

SYS

Deployment Notify customer SAP-
VL01N

HI

Billing Bill customer SAP-VF01 HI
{Service billing} PES SYS

Termination Service termination PES SYS

Legend

Activity regular system or user interaction activity, [event], continuous system activity

Application system SAP- precedes SAP ERP transactions:

context VA1[1/2] - Inquiry management (create/change), VA4[1/2] - Contract management

(create/change), VA0[1/2] - Sales order management (create/change), VL0[1/2]N -

Outbound delivery management (create/change), VF0[1/2] - Billing document

management (create/change), CAT2 - Maintaining timesheet data, CO0[1/2] -

Production order management (create/change), MM0[1/2] - Material management

(create/change), CS0[1/2] - Bill of materials management (create/change),

IW5[1/2] - service notification management (create/change)

Activity type HI - user interaction activity, SYS - system activity

Table 6.8: Process steps for deploying a BTO service.

After the inquiry, a contract is created to which the details entered in the inquiry

are copied. The contract contains the application service’s IT product representation (a

finished good). A remote desktop service was used. When the remote desktop service

is entered into the contract, the system recognizes that it is a configurable material and

asks for the configuration parameters. The contract also contains the necessary amount

of resources to run the service for the agreed-upon period. Figure 6.10 shows an extract

from the contract creation transaction (VA41). In this case, the service has a duration of

30 days. A small configuration for the five clients was agreed upon. Consequently, the

following calculation leads to the displayed quantities. The remote desktop server (access

point) has four virtual CPU cores, eight GB of main memory, and 80 GB of secondary

storage. For each small client one CPU core, two GB of main memory and 20 GB of

secondary storage are necessary. This, for example, results in a total of 6.480 CPU hours

126 An Information System Architecture for ASLPs

for 9 CPU cores (4 + 5 ∗ 1) that are active 24 hours a day for 30 days. Also, 1000 GB of

bandwidth is agreed upon.

Figure 6.10: Materials in the contract for remote desktop service.

Once the contract has been saved, a deployment order is generated. Figure 6.11

shows, as a UML object diagram, the remote desktop service and how on the different

abstraction levels of the ISAA the production order is represented. Once the production

has been created and released, it is sent to the PES. There, the system activity deployment

commences.

The PES confirms the deployment of the service and reports the access points’ address

back to the ERP system. This information is used in the notification of the customer.

The customer is then billed with an initial deployment invoice. During the operation of

the service, the PES will generate sale orders and invoices. At the end of the contract,

if it is not prolonged, the service is terminated. In the prototype, the full instances are

stored to disk before being terminated. These disk images are then made available to the

customer via a web download.

In Table C.1 the change of a service parameter during the operation phase is shown.

This process starts with a service request made by a user. It is entered into the ERP system

in the form of a customer notification with transaction IW51. The deployed remote desktop

service is canceled with a repair order taking the customer notification as a reference.

The contract is then updated with the new number of clients. When the production

order has been sent to the PES, this system updates the information associated with the

unique identifier of this service. The IaaS master then spawns a new instance, and the

configuration master configures it as requested. The process is completed with notifying

and billing the customer.

In the next section, the engineer-to-order process is discussed.

6.5.2.2 Full engineer-to-order

Table C.2 shows how engineer-to-order production is performed. In this case, the customer

does not request a content management service, but a ticketing system.

When the ETO sales order is placed, a project is created to which all efforts for

engineering the new service are posted. The software Redmine12 is selected during the

Create solution design activity. As a software configuration model is already available

12www.redmine.org

www.redmine.org

Johannes Hintsch, M. Sc. 127

Ite
m

C
om

po
ne

nt
D

es
cr

ip
tio

n
C

om
po

ne
nt

 q
ua

nt
ity

10
O

C
_R

E
M

D
E

S
K

R
em

ot
e

D
es

kt
op

-S
er

vi
ce

 O
rc

he
st

ra
to

r
1

20
A

C
_G

U
A

C
A

S
E

R
V

G
ua

ca
m

ol
e

S
er

ve
r

1

30
A

C
_L

IB
O

F
F

_W
IN

Li
br

eo
ff

ic
e

fo
r

W
in

do
w

s
1

40
IC

_W
IN

20
12

S
E

R
V

_S
W

in
do

w
s

20
12

 S
er

ve
r

-
S

5

80
IC

_U
B

U
N

T
U

14
04

_L
U

bu
nt

u
S

er
ve

r
14

.0
4

LT
S

 (
T

ru
st

y
T

ah
r)

 w
ith

 P
up

pe
t L

1

P
ro

du
ct

io
n

or
de

r
10

00
10

0

F
ig

u
re

6.
11

:
A

p
p
li

ca
ti

on
se

rv
ic

e
sh

ow
in

g
en

ti
ti

es
on

d
iff

er
en

t
ab

st
ra

ct
io

n
le

v
el

s.

128 An Information System Architecture for ASLPs

for this software on puppetforge.com, only the orchestration configuration model needs

to be developed. Figure 6.12 shows how the configuration model is drafted in the ASL

modeller during the activity create solution design. Subsequently, it is developed using the

ISAA DevOps stack. After the development is completed, the material master is updated.

Then, an acceptance test is performed. For the acceptance test, the service is deployed in

a testing environment in the ITSP system. Finally, the contract and ETO sales order are

updated with the newly created service.

After that, the process continues the same way that it has in the BTO scenario.

Figure 6.12: Modelling the new orchestration configuration model.

In the next section, the operation phase is discussed in two variations.

6.5.2.3 Different changes in operation

Table C.3 shows the activities to be performed when a service request requires altering

a model. In this instance, it is the creation of another database in the ticketing service

of the customer. The software configuration model is changed. Development times are

posted to the project of the respective material. Then the material master is updated, and

the service canceled with a repair order. The contract is updated, and a new deployment

sales order is created. Subsequently, the changed service is released into production, and

the usual steps for billing and notification follow.

Table C.4 shows the activities for fixing a bug in a customer’s landscape. In this case,

the software configuration model is changed. The changes are tested, and the material

master is updated. Again, all efforts are posted to the project of the respective material.

Projects are generated when the respective materials are first created. Material creation

occurs in customer-initiated ETO scenarios or when the provider decides to develop new

service components. Because the bug can affect multiple services, a full regression test

of the services that the respective material is used it has to be performed. Once the

regression test has been passed, the customer-wide deployment commences. After this,

the customers are informed. Depending on the agreements with the customer or company

policy, a customer notification can also be sent out before deployment.

puppetforge.com

Johannes Hintsch, M. Sc. 129

The customer-wide deployment is not initiated from within the SAP ERP system.

This would mean that repair and production orders would have to be created for every

affected service instance. Therefore, these activities are performed, and only the efforts

are posted to the respective material’s project.

6.5.2.4 Extending contract before termination

When the end of a contract approaches, the customer should be asked to extend the

contract. If the customer agrees to extend the contract, this needs to be reflected in the

ERP system. Therefore, the administration employee would modify the duration of the

contract by prolonging the dates. Also, in the case of fixed price regardless of volume,

the amount of consumable IaaS resources would need to be increased. Increasing resource

would not be necessary for pay-per-use billing. The steps are shown Table C.5.

In the next section, the feasibility of automation is discussed.

6.5.3 Feasibility of automation

In this section, the feasibility of automating the deployment of application system lands-

capes is evaluated. The development of configuration models is not for free (Talwar et al.,

2005). For developing configuration models and maintaining them, costs are incurred just

like for any other software. These include initial planning and development costs as well

as reoccurring development costs (Zarnekow et al., 2004).

Employing configuration models has a variety of benefits as discussed throughout

the thesis. Amongst them, automating deployment and operation is a crucial advantage.

Careless mistakes occurring in manual deployment can be avoided (Talwar et al., 2005).

Another benefit may be the increase in speed gained when employing automated deploy-

ment.

The following model compares automated and manual deployment and modification

in terms of the time incurred. The deployment or modification of an application system

landscape includes different steps, such as the creation of a file. All steps have a total

execution time. The time in which the system is in the state of execution is E =
∑n

i=1 ei

where ei is the time of an execution step and n the total number of steps. In particular,

in the manual case, each execution step is preceded by preparation time. This includes

the operator entering a command or filling out a form in a user interface. The sum of

preparation time is P =
∑n

i=1 pi where pi is the preparation time for each step. Wait time

can occur between steps. The operator might go for a coffee when a job was started. His

absence may surpass the time in which the system was in an executing state. Wait time

could also occur in an automation setting where a resource is busy, and therefore a process

has to wait for a certain step. The sum of wait time occurred in the deployment of one

service is W =
∑n

i=1 wi. Consequently, the total time for a deployment can be described

130 An Information System Architecture for ASLPs

by the following equation:

D =

n∑
i=1

ei + pi + wi

In Table 6.9 an example of automated and manual deployment times is sketched. It shows

for n = 3 the manual deployment and the automated deployment for n = 2. Different

numbers of steps can occur because configuration models can abstract multiple manual

steps. Consider, for example, the creation of a file. Manually creating a file can include

four steps. The file is created, access rights and the file’s owner are changed. Then, the

file’s content is edited. This is shown in the following snippet of shell commands.

$ touch /etc/ssh/sshd_config

$ chmod 600 /etc/ssh/sshd_config

$ chown root:root /etc/ssh/sshd_config

$ vi /etc/ssh/sshd_config

On the other hand, a declaration in Puppet DSL, as shown below, would only require

being executed once. It could also be executed repeatedly and would always, predictably,

assure the same file state (idempotency).

file { ’/etc/ssh/sshd_config’:

source => ’puppet:///modules/sshd/sshd_config’,

owner => ’root’,

group => ’root’,

mode => ’0640’

}

Table 6.9 shows that only p1 is larger than zero. All other steps are not preceded by a

preparation step larger than zero. Preparation step p1 is equal to the time the configuration

management master takes to translate or compile the configuration model to platform-

and node-specific configuration instructions. These instructions are sent to the agent to

perform the configuration (Delaet et al., 2010). No wait time is assumed to occur after

the automated steps.

In particular, if few service instances are deployed the development effort of automa-

tion can be questionable. The development time required for a particular service can be

defined as devtime.

devtime =
loc

pr

Lines of code are defined asloc and pr as development productivity for developing the

configuration models. The question that is addressed in this section is at how many

deployments m the following inequation becomes true for three services of the prototype.

m ∗ (
n∑

i=1

ei + pi + wi) < dev + m ∗ (
o∑

i=1

ei + pi + wi),

Johannes Hintsch, M. Sc. 131

Manual deployment Automated deployment
n = 3 n = 2

step execution time e1

step execution time e3

step execution time e2

step preparation time p2

step preparation time p3

step preparation time p1

wait time w2

wait time w3

wait time w1

m times

step execution time e1

step execution time e2

step preparation time p1

development time dev

m times

Table 6.9: Multiple deployments of a service in a manual and automated fashion.

where n is the number of manual and o the number of automated steps. In short, this can

be defined as

m ∗Dman < dev + m ∗Dauto,

where Dman is the total manual deployment time and Dauto the total automated deploy-

ment time.

6.5.3.1 Deployment times

For all tests, the initial version of the application service of the ETO scenario was used.

The full list of steps necessary for manually deploying each service is shown in the appendix

in Tables C.6, C.7, C.8, C.9, C.11, and C.10.

The author tested the manual deployment; no further individuals were asked to per-

form the deployments. These times are highly dependent on the individual who performs

the work. They depend on such factors as typing speed and familiarity with the process.

These manual deployment times only have illustrative character. Table 6.10 displays the

measured times for deployment.

Table 6.10 shows how long it took to deploy each service. The deployments were

performed with the instructions displayed on the second screen of the author’s computer.

For the remote desktop as well as for the content management service the accumulated

preparation time exceeds the actual execution time of the deployment. This is not true

for the SAP ERP service where more than seven hours were required to execute the

installation step. This long execution time can be explained by the fact that the ERP

132 An Information System Architecture for ASLPs

software was provisioned fully customized with data for training purposes.

Service Number of steps Dman

n∑
i=0

pi

n∑
i=0

ei

n∑
i=0

wi

Remote desktop 79 0:28:04 0:14:42 0:10:20 0:03:02
SAP ERP 36 7:40:20 0:12:52 7:25:17 0:02:08
Content management 35 0:07:34 0:05:05 0:01:42 0:00:44

Times written format hh:mm:ss.

Table 6.10: Manual deployment times for the three services.

The automated deployment, as expected, took less time compared to manual deploy-

ment. Table 6.11 shows the deployment of the three services in different configurations.

Each service in a particular configuration was deployed five times to get an average time.

During that time no additional load was placed onto the physical OpenStack host.

The remote desktop service was run in six different configurations. Small, medium

and large clients and different numbers of clients were used. Different sizes have a smaller

effect than the effect additional clients have on the overall deployment time. This is

obvious as an additional client requires an additional configuration run on that instance

of the configuration agent.

Service, deployment configuration avg min max sd

Remote desktop, 2 small clients 0:16:08 0:15:17 0:16:33 0:00:27
Remote desktop, 2 medium clients 0:17:12 0:17:01 0:17:25 0:00:08
Remote desktop, 2 large clients 0:17:32 0:17:24 0:17:41 0:00:06
Remote desktop, 3 small clients 0:18:37 0:18:04 0:19:02 0:00:25
Remote desktop, 3 medium clients 0:19:59 0:19:42 0:20:12 0:00:10
Remote desktop, 4 small clients 0:20:50 0:19:30 0:21:41 0:00:49
SAP ERP, standard 7:40:45 7:27:12 7:54:18 0:13:33
Content management, standard 0:03:55 0:03:49 0:04:05 0:00:06
Content management, parallel deployment 0:04:57 0:04:34 0:05:08 0:00:12

Times written format hh:mm:ss , avg - average, min - shortest time, max - longest time, sd - standard deviation

Table 6.11: Automated deployment times for different configurations.

The content management service was deployed in a standard and parallel fashion.

The parallel deployment started all five service deployments concurrently. As expected,

this resulted in a more extended deployment time per service instance. The SAP ERP

service exhibits a comparatively high variance of its deployment time as indicated by a

standard deviation of 13 minutes and 33 seconds. Relative to its overall deployment time,

this variation is similar to that, for example, of the different remote desktop deployment

configurations.

Figures 6.13 and 6.14 show the memory and CPU utilization of the PES’ instance.

For t = 1, ..., 8 the deployment of the remote desktop and the content management service

Johannes Hintsch, M. Sc. 133

0.000 mb

1.000 mb

2.000 mb

3.000 mb

4.000 mb

5.000 mb

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Time

used memory free memory buffers cached memory

Figure 6.13: Memory utilization of the PES during deployment (for t = 1, ..., 40).

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Time

CPU utilization

Figure 6.14: CPU utilization of the PES during deployment (for t = 1, ..., 40).

was performed. In t = 8, the deployment of SAP ERP started. Each interval between the

CPU utilization peaks from t = 8, ..., 40 represents the time in which an SAP ERP service

instance is deployed. There is a last peak at t = 40. When a deployment was completed,

log data was copied from the instance to a central location on the PES. The usage of the

memory reflects the memory handling of the Java-based Puppet master. An increase very

close to t = 0 can be spotted. Here, the content management service was deployed in

parallel. After that, drops occur twice after the deployment of an SAP ERP service has

started.

The consumption statistics indicate that the PES has to be sized according to the

expected demand. It could also be possible to apply a load distribution strategy in which

deployments of the services are spread out evenly across the available time.

The next section presents a comparison between the manual and automated deploy-

ment.

134 An Information System Architecture for ASLPs

6.5.3.2 Comparison

A software development productivity indicator is required to compare the manual deploy-

ment with the automated deployment. Because the automation of service deployment or

modification is preceded by the development of the corresponding models the time required

for development has to be added in the case of automated deployment (see the previous

section).

 -

 5.000

 10.000

 -
Manual Automatic

 -

 200

 400

 600

 800

 1.000

 1.200

 1.400

 1.600

 1.800

 2.000

 - 100 200 300 400 500 600 700 800 900 1.000 1.100 1.200 1.300 1.400 1.500

H
o

u
rs

Deployments

Manual Auto., par.=1 Auto., par.=2 Auto., par.=4 Auto., par.=8

Figure 6.15: Manual deployment of SAP ERP compared to automated deployment.

Different statements are made about developer productivity. Brooks (1995, p. 237)

indicates that productivity largely depends on the complexity of the development pro-

ject. He reports between two and 28 lines of code (LOC) per day depending on project

complexity. The assessment originated in the domain of operating system and compiler

development. For developing the configuration models in the DSL, developer productivity

of 20 LOC per day will be assumed in the following examples. This number is closer to

the optimistic 28 because it is assumed that the DSL assists the developer in developing

the models (Delaet et al., 2010).

Figure 6.15 shows a comparison of the manual deployment of SAP ERP compared

with the automated deployment. A total of 225 LOC were necessary to formulate the

configuration models for SAP ERP. If deployments are automated, without parallelization,

manual and automated deployment break even at 324 deployments. With parallelization,

the break-even point occurs before a hundred deployments in all calculated parallelization

cases.

Figure 6.16 shows a comparison for the remote desktop service. Here, the LOC

counted in all utilized models was 14.472. This includes the configuration models obtained

from puppetforge.com. If all of these models would have to be developed from scratch the

break-even point would be at 13.529 deployments with eight deployments being performed

in parallel. The large majority of LOC comes from the externally obtained configuration

models. These models do not focus on one function of the software they configure but

support all functions. Also, they support various operating systems. When counting only

the LOC that had to be added (264), the break-even point is reached quicker. Figure 6.17

puppetforge.com

Johannes Hintsch, M. Sc. 135

1.000

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

0 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

H
o

u
rs

Deployments

Manual Auto., par.=1 Auto., par.=2 Auto., par.=4 Auto., par.=8

Figure 6.16: Manual deployment of the remote desktop compared to automated deploy-
ment (external development time added).

1.000
Manual Automatic

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1.000 1.100 1.200 1.300 1.400 1.500

H
o

u
rs

Deployments

Manual Auto., par.=1 Auto., par.=2 Auto., par.=4 Auto., par.=8

Figure 6.17: Manual deployment of the remote desktop compared to automated
deployment.

shows this. Here a break-even point is reached at 670 deployments without parallelization.

When using parallelization, this point is reached before 400 deployments for all modes of

parallelization.

Automating deployments is not for free. If only small quantities of service instances

are deployed over a service’s lifetime, the automation might not be feasible. However,

deployments may not only occur in the production environments. If each developer requi-

res an approximation of the production landscape in order to implement new features or

test more productively (Spinellis, 2012), the required quantity of deployments can quickly

grow. Also, a service may not be deployed only once. New versions may repeatedly be

deployed. In such cases, these models may also be used frequently, and the automation

effort would be well invested.

Figure 6.18 shows the correlation between costs per deployment and number of de-

136 An Information System Architecture for ASLPs

Deployments
C

o
s
ts

Figure 6.18: Costs per deployment decrease when the number of deployments increases.

ployments. It summarizes the results of this section’s investigations. As the number of

deployments increases, the costs per deployment decrease.

Whether or not automation is feasible depends on how often the business function

needs to be performed. However, also greater reliability and inherent documentation are

benefits of automating operations with model-based configuration management.

This section (section 6.5) presented a prototype used for evaluation. The next section

maps the prototype’s entities to those of the ISAA.

6.5.4 Mapping of prototype’s entities to ISAA’s entities

Tables 6.12 and 6.13 present a mapping between elements of the prototype and the ISAA.

Prototype elements are, for example, a concrete application service such as SAP ERP,

standard. The ISAA’s equivalent would be the general Application service entity. On the

one hand, SAP ERP, standard is part of Table 6.11 where the deployment times of different

configurations of the three sample application services were shown. On the other hand,

the Application service is a central concept and entity in the architecture description of the

ISAA. Instead of the word entity, the AD element is used in alignment with ISO/IEC/IEEE

(2011, p. 7). “An [architecture description] element [(ADE)] is any construct in an

architecture description. AD elements are the most primitive constructs discussed in this

International Standard [...]”, (ISO/IEC/IEEE, 2011, p. 7). The occurrence columns show

where the prototype element or the ADE were displayed.

The ADEs are displayed in various Figures and Tables and may be entities of the

domain model diagrams, but are also full diagrams such as that for inquiry and order

processing (cf. Figure 5.16). Whereas the SAP ERP, standard has a direct match with

an ADE (Application service), the prototype element Remote desktop, 2 small clients

has none. It is a parameterized BTO service. Although the parameterization is part

of the models (cf. Figure 5.5), no specific ADE exists in the displayed diagrams for a

parameterizable Application service, it is only described in the text. This is marked by an

x in the column S.. Some limit had to be made as to which ADEs to display in diagrams

and which not. Those that are not displayed could be easily added.

Johannes Hintsch, M. Sc. 137

Prototype element Occurrence ADE S. Occurrence

ASL modeller F. 6.7 Integrated development environ-
ment

x F. 5.24

Computer (e.g., Ope-
rator / Developer com-
puter)

F. 6.7 Instance Fs. 5.8, 5.24, and A.2

Customer instance F. 6.7 Instance Fs. 5.8, 5.24, and A.2

Eclipse (with addons) F. 6.7 Integrated development environ-
ment

x F. 5.24

External repositories
(e.g., Ubuntu package
repository)

F. 6.7 Definitive media library F. 5.24

Git client F. 6.7 Integrated development environ-
ment

x F. 5.24

GitLab CE F. 6.7 Version control system Fs. 5.10, 5.24, 5.25,
and A.1

Hosts (e.g., virtualized
repository host, virtu-
alized ERP host)

F. 6.7 Instance Fs. 5.8, 5.24, and A.2

KVM hypervisor F. 6.7 IaaS master x Fs. 5.8, 5.10, 5.25,
and A.2

OpenStack Ceilometer F. 6.7 Usage tracking module F. 5.24

OpenStack Glance F. 6.7 IaaS master x Fs. 5.8, 5.10, 5.25,
and A.2

OpenStack Heat F. 6.7 Orchestration module F. 5.24

OpenStack Horizon F. 6.7 IaaS master x Fs. 5.8, 5.10, 5.25,
and A.2

OpenStack Keystone F. 6.7 IaaS master x Fs. 5.8, 5.10, 5.25,
and A.2

OpenStack Neutron F. 6.7 IaaS master x Fs. 5.8, 5.10, 5.25,
and A.2

OpenStack Nova F. 6.7 Infrastructure control module F. 5.24

Physical OpenStack
host

F. 6.7 Manufacturing equipment Fs. 5.11 and 5.12 as
well as T. 5.2

Production execution
system (PES)

F. 6.7 Production execution system Fs. 5.10, 5.24, and
5.25

Puppet agent F. 6.7 Configuration management agent Fs. 5.24, 5.25, and A.2

Puppet server F. 6.7 Configuration management master Fs. 5.10, 5.24, 5.25,
and A.2

SAP Basis F. 6.7 Customization module F. 5.24

SAP ERP 6.00 GBI
client, EHP7

F. 6.7 ERP system Fs. 5.10, 5.24, and
5.25

SAP GUI F. 6.7 Integrated development environ-
ment

x F. 5.24

SAP MM F. 6.7 Production and logistics module Fs. 5.10, 5.24, and
5.25

SAP PP F. 6.7 Production and logistics module Fs. 5.10, 5.24, and
5.25

SAP SD F. 6.7 Sales module Fs. 5.10, 5.24, and
5.25

Virtual Box (with Va-
grant)

F. 6.7 Integrated development environ-
ment

x F. 5.24

Legend: S. - The prototype element is a subcomponent of this ADE and only described in text, F. - Figure, Fs. - Figures., and
T. - Table.

Table 6.12: Mapping of elements of the application system landscape of the prototype to
the elements of the ISAA (ADE).

138 An Information System Architecture for ASLPs

This mapping explicates, representatively for all displayed prototype elements, to

which ADEs they belong. In EVAL 2 (cf. section 6.2) such a mapping was shown in the

object diagrams that are typed to the domain model entities. This mapping shows the

applicability of the ISAA for the prototype and its’ applicability for the sample services

of EVAL 2.

In the next section, the ISAA is evaluated based on expert interviews.

Prototype element Occurrence ADE S. Occurrence

OC REDMINE LAMP F. 6.9 Orchestration configuration model Fs. 5.5, 5.6, 5.8, 5.25,
A.1, and A.2

Ubuntu Server 14.04
LTS (Trusty Tahr)
with Puppet

F. 6.9 Infrastructure configuration model Fs. 5.5, 5.6, 5.8, 5.25,
A.1, and A.2

wordpress F. 6.9 Software configuration model Fs. 5.5, 5.6, 5.7, 5.25,
A.1, and A.2

Gather customer re-
quirements

T. 6.8 User interaction activity Fs. 5.1 and A.2

Inquiry and order pro-
cessing

T. 6.8 Business process Fs. 5.1, 5.16, and A.2

SAP-VA11 T. 6.8 Sales module x Fs. 5.10, 5.24, and
5.25

CPU CORE HOUR F. 6.10 CPU hour F. 5.12

REMDESKSERV 03 F. 6.10 Application service Fs. 5.4, 5.5, 5.12,
5.31, and A.2

Thread starting billing
activity

F. 6.8 System activity F. 5.1

Remote desktop, 2
small clients

T. 6.11 Application service x Fs. 5.4, 5.5, 5.12,
5.31, and A.2

Remote desktop, 4
small clients

T. 6.11 Application service x Fs. 5.4, 5.5, 5.12,
5.31, and A.2

SAP ERP, standard T. 6.11 Application service Fs. 5.4, 5.5, 5.12,
5.31, and A.2

Legend: S. - The prototype element is a subcomponent of this ADE and only described in text, F. - Figure, Fs. - Figures., and
T. - Table.

Table 6.13: Mapping of prototype elements to the elements of the ISAA (ADE).

Johannes Hintsch, M. Sc. 139

6.6 Evaluation based on expert interviews (EVAL 3)

Three experts were interviewed to evaluate the ISAA with respect to its feasibility and uti-

lity (Hevner et al., 2004; Sonnenberg and vom Brocke, 2012). These experts were selected

based on their expertise in different areas relevant to the ISAA. Their expertise spans the

spectrum of educational backgrounds and occupation from management to information

systems to computer science. Two of the respondents have 18 years and one 35 years of

working experience. Table 6.14 provides an overview of the experts.

ID Exp. Education Position Occupation

1 18 y. Master in Infor-
mation systems

Department
lead

Oversees development of the order-to-
cash process of an internet service pro-
vider.

2 35 y. Master in Mana-
gement

Department
lead

Oversees the consulting activities in sta-
tistics, finance and business intelligence
of an industrial IT service provisioning.

3 18 y. Master in Com-
puter science

Department
lead

Oversees the infrastructure management
activities of an ASLP.

Exp.: Working experience in years

Table 6.14: Overview of experts, sorted by their interview ID.

In the following section, the interview design, including the posed questions, is pre-

sented.

6.6.1 Interview design

A presentation preceded all interviews via Skype. The presentations lasted about 45

minutes and presented the central concepts of the ISAA. The slides are provided in section

C.4 in the appendix. After the presentations, the respondents were asked if any questions

had arisen during the interview to clarify them. The interviewees were asked to not

answer specifically for their current company, but for ASLPs instead. Subsequently, the

interviews commenced. All interviews and presentations were conducted in German. The

interviews were voice recorded, transcribed, and translated afterward. The respondents

were provided with the interview transcripts for their consent for publication.

The posed questions are presented in section C.5. Questions are aligned with the

architecture decisions presented throughout the chapters 4 and 5. The question catalog

consists of three main blocks. An interview started with an opening question to introduce

the respondent into the conversation. It was posed in a way to start the opening of the

interview on a positive note (Kromrey and Strübing, 2009, p. 358). The first question

block was concerned with the application services. Here, questions were posed with respect

to the feasibility of the configuration models and the production process. The second block

was concerned with the application system landscape of the ISAA. Here, it was inquired

as to whether or not the design of the landscape was feasible. In the third question block,

140 An Information System Architecture for ASLPs

the interviewees were asked if they would implement the ISAA if they had the resources.

Finally, they were asked if, in their view, the ISAA offers utility.

6.6.2 Results

When asked how the respondents assess the increasing standardization and automation

of IT they all acknowledged its necessity. They emphasized that it is a means of keeping

costs under control with increasingly scarcely available human resources. Respondent 3

said that it is a means of managing the increasing expectations and responsibilities that

IT is confronted with.

Next, it was inquired if the reuse of configuration models between different applica-

tion services would increase the overall efficiency. The respondents affirmed this. Again,

respondent 3 added that the configuration models would need to be flexible enough in

order to meet different scenarios. All operational tasks can be recorded in configuration

models. Expenses incurred for development and maintenance can be directly allocated to

these models. All respondents affirmed that this is helpful for determining the profitability

of services.

The pre-engineering price assessment that is enabled by the application system lands-

cape modeler (section 6.5.1.4) was considered helpful by the respondents. Respondent 3

added that it would be helpful particularly in scenarios where a high variation exists among

application services. In his experience, making early price assessments is often tricky.

The respondents narrow the supportability of application services to those that can

previously be modeled. Respondent 2 points to services that require individual customi-

zation. Such services could be handled in the ETO process case. However, respondent 3

adds that the more specialized the services become, the higher the required investment

will be. This does not only apply to the services themselves, but also to the application

system landscape to support the ISAA. This is also evident from the investigation of the

feasibility of the automation in section 6.5.3. The more often a model is reused, the more

profitable it will become. This reusability may diminish the more specific its intended use

becomes. Models have to be deployed a specific number of times in paid services to be-

come profitable. However, technically no concerns as to the implementability of different

application services were raised.

With respect to the ISAA-supported service levels, the respondents agree that help

desk response times and availability are the two most important indicators. However,

they would add further indicators. Respondent 1 indicated that compliance and customer

satisfaction would be necessary measurement criteria. However, their implementation

would be out of scope for this thesis. Nonetheless, compliance assessments could be

significantly eased by the available information in the configuration models (Talwar et al.,

2005; Delaet et al., 2010). Respondent 3 adds that response time behavior and recovery

times would be necessary indicators. Furthermore, he sees time to solution as helpful, but

only very few providers are capable of providing a service level based on this measure.

Agreed upon recovery times could just be added as constants to the existing materials

Johannes Hintsch, M. Sc. 141

in the ISAA. Help desk employees could sort incidents based on their urgency. Response

time behavior depends on the technical performance of the services. Such an indicator

could be included in a way that would deploy application system landscapes on hosts with

different performance characteristics, for instance, the available network bandwidth per

second.

Regarding the different payment methods, the respondents agreed that the two desig-

nated ones (fixed billing and pay-per-use) are the basic methods that need to be supported.

Respondent 1 added that instant billing is a popular method. This could be realized with

a different billing interval, for example, daily.

The respondents were then asked whether or not the two modes of service production,

BTO, and ETO, were sufficient. They agreed that these are the two commonly practiced

modes of production. Respondent 1 added that the ETO mode could be enhanced by

integrating software as a service offerings from different providers, for example, engines

for tax calculations. Such offerings could be integrated based on software configuration

models that would wrap the offerings’ APIs. Thus, they could make these services usable

in ISAA-provisioned application system landscapes.

Finally, in the first question block, interviewees were asked if they deem the auto-

mated provision and operation of application services as envisaged in the ISAA to be

practical and useful. The respondents affirmed this. Respondent 3 added that a high de-

gree of standardization amongst the provisioned application services would be necessary.

Furthermore, he sees the danger that particular technical requirements could surpass the

capabilities of the production execution system. If such application services are requested,

this could hinder profitability. Overall, however, an agreement was voiced.

The second question block inquired about the application system landscape that sup-

ports the ISAA. First, respondents were asked if the ERP system should be the leading

system of the landscape. Also, it was asked whether or not storing the complete applica-

tion service structure in the ERP system made sense. Here, respondents 2 and 3 agreed.

Respondent 1 raised several concerns, but also some agreement. Referring to the pro-

prietary ERP software, he said that the ASLP would make himself very much dependent

on one team managing the ERP system. Also, the license model of the ERP software

could negatively impact its profitable use. Although he values a single point of truth, in

particular for controlling purposes, he suggests that such a concentration would hinder

flexible adaptation to customer demands. He alternatively suggests to only aggregate in-

formation in the ERP system. The information would not have to be created there, but

could instead be aggregated in the ERP system. He agreed with the necessity to store

the structural service information in the ERP system in its entirety, also specifically, for

controlling purposes. When performing mergers and acquisitions, an approach with high

integration could be challenging to maintain. When starting a company, the proposed ap-

proach should be followed, he added. Respondent 3 also agreed that the approach would

support controlling.

At the end of a contract, the service is terminated. The ISAA allows providing the

142 An Information System Architecture for ASLPs

customers with copies of the IaaS instances. The respondents were asked if this is sufficient.

Respondent 1 referred to a practice going even further. His company required partners to

provide them with the full source code and the configuration models of services they had

outsourced to them. Respondent 2 said that, although not common practice, in his opinion

the proposed practice was not sufficient. If he were a customer, he would require providers

to hand out human-readable exports at the end of a contract. Such an end-of-contract

procedure would go beyond the capabilities of standardization. Here, additional individual

consulting services could be offered. Respondent 3 assessed the proposed provisioning of

IaaS instance copies to be going beyond what is currently offered by providers. In his

opinion, providers currently only provide the possibility, if at all, to download data via

provided APIs.

The respondents supported the requirement that the infrastructure layer of the IT

stack needs to be provided by IaaS software. The requirement is seen as satisfiable.

Furthermore, the considered application software was assessed to be comprehensive.

In the last part of the interview, two final questions were asked. The first question

was that if the respondents were executives of ASLPs and had sufficient means if they

would implement the ISAA. Respondent 1 only partially agreed. He said that two schools

of thought exist. One school would follow the direction suggested by the ISAA. The

other, which he would prefer, would not have the ERP system as the leading system, but

rather as an aggregating system. He added that the culture and organization would have

to grow alongside the technological progress. Respondent 2 said that for standardized

service he would implement the architecture. He said that its accounting capabilities

would be beneficial. Respondent 3 affirmed that the enterprise management, the IT service

management, and the IT service production system are the crucial systems for ASLPs.

However, he said that it was a philosophical question which one would be the leading

system.

When asked if the ISAA would increase the quality and efficiency of application

system landscape creation, all respondents answered positively. Respondent 2 limited it

to standardized services, as did respondent 3. Respondent 3 added that having the ERP

system as the leading system would help with audits, documentation, and release processes.

It would increase traceability. Also, he added, the architecture would be particularity

valuable for standardized services.

In the next section, the results of the evaluation are discussed.

6.7 Discussion

Whereas for manufacturing standardized parts exist, those standardized building blocks

for IT are not evident. In software engineering, libraries or conventional protocols can

be reused. Nevertheless, a myriad of different software stacks exists on which application

software is based. The first hypothesis proposes how this gap can be addressed for ASLPs.

Johannes Hintsch, M. Sc. 143

Hypothesis 1

A dominant parts-based product design can be established for ASLPs. These designs

are based on software for different operations automation approaches, such as confi-

guration management software, container-based virtualization software, infrastructure

as a service software, and orchestration software.

The presented configuration models introduce a wrapper. They encapsulate heteroge-

neous software stacks and expose defined interfaces. This enables the production execution

system to deploy application services with various software stacks. In this regard, these

configuration models are the equivalent of materials in manufacturing.

The configuration models formalize configuration information for the deployment and

operation of the services (cf. REQ C.2). The materials in the material master correspond

to those models. All employees can see an application service’s components with access and

authorization for the ERP system. An architect or salesperson can investigate the service’s

structure by actual production-relevant information. This increase in transparency could

lead to a similar situation as in manufacturing where the ERP system represents a full

and accurate view of the products of a company.

The proposed software stack does not impose new architectural paradigms. It can

integrate with existing set-ups. Companies have to use infrastructure as a service software

or procure respective resources if they are to adopt the architecture. This can be a problem

for companies with a very heterogeneous or specialized set of hardware (cf. REQ R.3).

However, the majority of applications should be covered by this approach.

Service levels are maintained as materials in the bill of materials that represent the

composition of a particular application service. Contractual specifications such as duration

and cost are maintained in contracts and sales orders (cf. REQ C.1).

Customizability, as well as standardization of the application service’s construction,

need to be achievable (REQ S.2). Modularization should be used (REQ S.3). Using

modularization helps to achieve customizability based on a set of standard modules. The

benefits of modularization become evident when the content management service only

needs modification in the orchestration configuration model. Furthermore, customizability

is achieved through the configurable BOMs. This way, for example, instance numbers or

service level can be adapted to customer requirements.

In addition to mass-customization (build-to-order), engineer-to-order production is

also supported in the ISAA (cf. REQ P.3). Motivated by the efficiencies of modern manu-

facturers that can build products from part libraries in computer-aided design software,

the second hypothesis is formulated.

Hypothesis 2

ASLPs can produce their application services based on models and components, as

well as automatically, much like physical products of modern manufactures.

Few components are required to set up a service (an instance, an image, and the

configuration models). This makes development in production-like environments very

144 An Information System Architecture for ASLPs

easy. Employees responsible for development and operations can approximate application

system landscapes in a production-like manner using desktop virtualization locally. These

locally available application system landscapes can increase engineering productivity and

quality because the engineers can have unrestricted access to production-like ASLs. They

can rapidly and automatically deploy ASLs based on the configuration models on their

personal computers and experiment with the ASLs without effects elsewhere.

The engineering activities are managed in the ERP system’s project management

system. The engineers can track their time with the ERP system’s time tracking functio-

nality. For the initial drafting of the application system landscape, they can be supported

by an integrated modeling environment that is integrated with the ERP system. For such

ETO projects, based on the models, early price estimates can be obtained quickly and

accurately. Alpha, for instance, has the problem that their architects are not able to make

price estimates for ASLs that are inquired for by their customers. Such estimates could

be easily achieved by using the configuration models. The different configuration models

are the elements that are aligned in solution designs (e.g., UML deployment diagrams)

when designing customer ASLs. Prices can be attached to these configuration models

in the ERP system. Price estimates can be made accurately. The interviewed experts

welcomed such functionality. They were doubtful that highly individualized application

services might be produced with profit in the suggested architecture. The architecture is

designed for reuse of the configuration models. If the configuration models are too speci-

fic according to customer requirements, then this reuse may not be possible, the experts

argued. In such cases, the deployment and configuration approach of the ISAA could be

mixed with manual deployment instructions that are encoded in routings as suggested by

Ebert (2009).

It was demonstrated that instantiations of the ISAA can support ASLs of different

complexity and application software of different kinds (cf. REQ S.1). A desktop service, as

well as a proprietary ERP service, could be deployed and operated. However, respondent 3

pointed out that deployment is only one step in the lifecycle of an ERP system. Nonethe-

less, everything that can be configured by using an API can be configured automatically.

Any software that runs on the operating systems that are supported by the employed IT

service production systems can be deployed. It is just a question of how complex the con-

figuration models become. The boundaries between software development for operations

automation and other business functions blur in this regard. Consider, for example, the

business process customization within an SAP ERP system. As long as customization

can be triggered through APIs that the configuration models can access, the system may

be customized with the models. Respondent 3 added that flexible (e.g., parametrizable)

configuration models would increase their versatility.

Furthermore, to configure complex application software more effectively and with less

effort, specific configuration management software could be used. It would be possible

to have an ITSP system with more than one configuration management master and dif-

ferent kinds of software configuration models. For instance, a specialized configuration

Johannes Hintsch, M. Sc. 145

master (e.g., SAP Solution Manager) could facilitate the configuration of a proprietary

ERP system (e.g., SAP ERP) with less effort than a general purpose configuration mana-

gement software. The effort of creating software configuration models for the specialized

configuration management system could be lower due to pre-defined templates or specific

DSLs provided by the software. Still, general purpose software could be used for the other

application services. Such a mix of configuration management software would be possible,

but the number of different configuration management software products should be kept

low not to increase complexity to an unmanageable extent.

Profitability considerations should guide what to automate and what not. Companies

must answer the question of how much effort they want to invest in creating the configu-

ration models. Formalizing for automation is expensive as was discussed in section 6.5.3.

Unprofitable models, however, should be readily identifiable with the presented archi-

tecture using analytical accounting and profitability analysis available in standard ERP

systems. Furthermore, full automation and formalization reduce the chances of errors

and the dependence on experts. In this regard, providing ASLP personnel with effective

tool-sets is crucial to facilitate efficient creation of configuration models. Coping with the

scarcity of human resources was a problem highlighted by all three interviews. Therefore,

companies, even in specific areas with low repetition, should investigate the advantages of

automation. A case like Gamma would not be as reliant on the expertise of few employees,

for instance in cases of sickness, because their operation knowledge would be formalized

in the configuration models. Also, in settings where changes are frequent, the proposed

models may often be employed.

One cornerstone of process automation (cf. REQ P.1) in the ISAA are the confi-

guration models that make application service descriptions operationalizable. The other

cornerstone is the application system landscape. Respondents indicated that maintaining

such a landscape in practice is expensive. The set-up of the prototype and SAP ERP

system, mainly regarding its customization, was very time-consuming. SAP ERP system

customization, in accordance with SAP’s configuration templates (cf. section 6.5.1.1), was

mainly carried out by a student assistant for one year and five months with a forty hour per

month employment contract. The decoupling of the PES from the ERP system (cf. AD

9) proofed sensible in this regard. Its functionality could be implemented separately and

with fewer integration-constraints that needed to be considered. The automation, in the

prototype, was limited to the time onwards from which the production order is released to

commence deployment or realize customer ASL changes (cf. REQ.4). ERP-based process

automation was not realized as this is not new and could be implemented (Cardoso et al.,

2004).

Existing functional integration of the ERP system’s modules (cf. REQ R.2) can be

utilized. For instance, human resource management is integrated with project manage-

ment. This integration is necessary, for example, to be able to staff development projects

according to the availability of the developers. ERP functionality is also available in areas

such as procurement or for liquidity management procedures such as dunning. Requi-

146 An Information System Architecture for ASLPs

rement REQ R.2 is met if standard software is employed which provides the required

functionality. Using the ERP system as a central point for initiating all service creation

is seen critically by the experts. This could slow down the ASLP’s reaction speed to new

market demands. However, the resulting single point of truth characteristic is seen po-

sitively, in particular for controlling purposes. When implementing the ISAA, a balance

between integration effort and agility has to be found. Success factors for enterprise sy-

stems adoption (cf. section 3.2.2) need to be considered when implementing the ISAA.

Top management support needs to be considered when implementing and customizing the

proposed application systems. Also, the enforcement of using a limited set of operations

automation approaches likely will require a substantial amount of training as well as the

mentioned top management support.

The ISAA is particularly relevant for companies that have a broad portfolio of diverse

services built on a set of standard modules (cf. REQ R.1). It requires investment to

create or source the necessary configuration models as well as the needed application

system landscape. If a service is only sold a few times, this investment may not pay

off. However, companies that must set up a multitude of application system landscapes

for their customers can profit from the information system architecture. For instance, it

can decrease the time-to-market for landscapes based on new application software. Also,

DevOps-employing companies or those that deploy microservices may benefit from the

provisions of the ISAA. In this regard, it was shown that containers could be handled by

the architecture as well as multi-tenant application services.

Relevant related work focuses on only on different operations automation approaches

(cf. sections 3.4 and 4.3) or proposes only a high-level architecture (cf. section 3.1.3). In

contrast, the ISAA exemplifies comprehensively on all relevant layers how an organizati-

onally aligned operations automation approach can be implemented. The measurement

principle (cf. CAMS principles for DevOps), in particular regarding business success, can

be followed by ISAA-implementing organizations (cf. REQ P.2). The configuration mo-

dels provide a consistent way to describe the provisions necessary for operating complex

application system landscapes. Implementing the architecture is a question of capability

both in maintaining the infrastructure and being able to develop services based on the

three kinds of models fully.

The manufacturing analogy has been employed throughout the thesis (cf. REQ R.4).

The analogy notably guided the domain model mapping to the ERP master data. Here,

the prototype could be implemented without non-standard customization required. To

implement the continuous nature of a service, custom fields in the contract had to be used

to differentiate between different billing types. Also, the PES was necessary in order to

bill regularly (cf. REQ P.5).

Based on this discussion, it is concluded that Hypotheses 1 and 2 are valid. The

research goal of the thesis was to increase the efficiency of the ASLP’s application service

production.

Johannes Hintsch, M. Sc. 147

Research goal

The research goal of this thesis is to increase the efficiency of ASLPs’ application ser-

vice production through standardization, automation, and modularization by creating

the ISAA.

That goal was reached. The efficiency of application production is increased compa-

red to manual deployments or deployments that are based on heterogeneous automation

techniques due to the proposed standardization, automation, and modularization. This

could be shown in EVAL 3, where automated and manual deployments were compared.

The utility of the ISAA, in particular regarding efficiency and quality, was confirmed by

the respondents of the expert interviews.

The next chapter will conclude this thesis.

Johannes Hintsch, M. Sc. 149

7 Conclusion

This thesis will be concluded in three parts. First, a summary is provided. Secondly, the

research contributions are highlighted. Moreover and finally, an outlook on future work is

provided.

7.1 Summary

The research stream of industrialization of information technology (IT) studies how in-

dustrialization principles, which have been successfully applied in traditional industries,

can achieve utility in IT service provisioning. In contrast to IT services, the composition

of physical products is more straight-forward. This thesis has made the argument that

a standard concept in IT, describing what the raw materials, the semi-finished goods,

or even the products (finished goods) are, is not self-evident. Identifying such a concept

would help to manage IT service provisioning similarly to how it is done in manufacturing.

Aiming at higher efficiency, comprehensive software support for the IT service production

process is proposed by this thesis. As in manufacturing, the application system landscape

could be led by an enterprise resource planning (ERP) system.

Whereas previous literature has addressed the industrialized IT service providers as

a whole, this thesis embarked upon a different path.

The scope was narrowed to a specific type of IT service provider. It was exempli-

fied that the ERP concept can comprehensively be implemented to achieve utility for IT

service providers. Companies which offer application services to their customers are the

chosen IT service provider type. This thesis referred to these companies as application

system landscape providers (ASLP). ASLPs focus on the production of application system

landscapes. They provide landscapes of different application systems to their customers.

Unlike traditional application service providers, their focus lies on the design, deploy-

ment, and operation of complex application system landscapes for their customers. This

focus allowed a concentration on the specific necessities of ASLPs. Large infrastructure

as a service providers (e.g., telecommunication companies) could use the architecture to

forward-integrate application service production. Particularly, small and medium-sized

businesses that have difficulty in operating their growing IT landscapes in the cloud (Hsu

et al., 2014) might profit from such offerings. For quickly testing complex landscapes and

assessing time-to-market the ISAA could be of value. Also, large internal IT service provi-

ders that develop their companies’ application services in a microservice approach might

profit from the ISAA.

150 An Information System Architecture for ASLPs

To be able to treat application system landscapes that underlie application services

in a parts-based manner, they have to be described in a specific form. Service design was

addressed by Hypothesis 1. It stated that dominant parts-based product design could

be established for ASLPs. Such designs are based on software for different approaches

of automating application service operations. Hypothesis 2 assumed that ASLPs could

automatically produce their application services based on models and components, much

like physical products of modern manufactures.

Two scenarios were differentiated in this regard. Build-to-order (BTO) scenarios

apply to situations where application services constitute low variability. Following a mass

customization approach, application services in BTO scenarios can be parametrized to fit

with customer requirements. The thesis proposed an engineer-to-order (ETO) approach

where customer requirements are transformed into application system landscapes to satisfy

more specific customer requests.

The overall goal of the thesis was to increase the efficiency of ASLPs’ application

service production through standardization, automation, and modularization. To achieve

this research goal and to test Hypothesis 1 and 2, an information system architecture for

ASLPs (ISAA) was proposed. Before constructing the ISAA in a design science aligned

manner, three research questions had to be answered:

(1) How do application system landscapes of IT service providers look like today?

Based on case study results, application system landscapes of IT service providers are

composed of three application systems grouped in three main categories: enterprise mana-

gement, IT service management, and IT service production systems. Application systems

from these categories form the basis of the ISAA’s application system landscape.

(2) What are the requirements that application system landscape providers have regar-

ding an information system architecture that supports their application service production

process? 14 requirements were derived from the analysis of three ASLP cases as well as

literature. These requirements pertained to the overall relevance of the ISAA, complete

service description, specificities of application services, and production manageability.

(3) What operations automation approach is suitable for constructing the informa-

tion system architecture? Different operations automation approaches were analyzed to

construct the ISAA. Model-based configuration management was selected because it re-

presents all layers of the IT stack and imposes low requirements for architectural changes

of the application software that it is managed with.

The thesis proposes that an application service is composed of three configuration

models (cf. section 5.1.2). These are software configuration, infrastructure configura-

tion, and orchestration configuration models. Software configuration models specify what

software packages are installed and how software is configured on a specific instance. In-

frastructure configuration models define instances. Orchestration configuration models

define which software configuration is applied to which instances. The relationship bet-

ween the configuration models and other entities of the ISAA was described in a domain

model that cross-cuts the different architecture layers. In addition to the business model,

Johannes Hintsch, M. Sc. 151

a production process was presented describing how application services are produced in

the ISAA: from inquiry and order processing over deployment and billing to termination.

This process is supported by an application system landscape that features a production

execution system. The production execution system orchestrates the different systems.

This orchestration causes application services that are sent with production orders from

the ERP system to be deployed on machines of an infrastructure as a service system.

The evaluation was conducted in a systematic stepwise approach (Sonnenberg and

vom Brocke, 2012). Three steps were conducted. First, the relevance of the research was

justified by highlighting the research gap. In particular, three sets of related work are

relevant for this thesis (cf. section 3.5.2). Orchestration software, industrial methods for

IT service production, and the recently published IT4IT reference architecture. IT4IT and

the industrial methods for IT service production have a similar approach and facilitate

organizationally integrated IT service production. IT4IT is more aligned with the Infor-

mation Technology Infrastructure Library’s IT service management. The authors of the

industrial methods for IT service production related work set suggested adopting ERP

systems for manufacturers (cf. Figure 4.2; Hintsch et al., 2016b). However, both only

consider limited technical detail. The ISAA considers IT service production systems in

the organizational context including sufficient technical detail to deploy and operate appli-

cation services. The selected model-based configuration management approach provides

enough versatility not to limit application software to a certain technology stack. IT4IT,

as a recent international standard, shows the relevance of the ISAA’s addressed topic. In

the future work section, a possible alignment between the ISAA and IT4IT will be outli-

ned. From the perspective of orchestration software, the ISAA provides an organizational

framework in which development and operation of application software can take place.

Secondly, the artifact description, in this case, the architecture description of the

ISAA, was validated. It was validated by using the provisions suggested (ISO/IEC/IEEE,

2011). It transparently detailed how the architecture decisions were made by illustrating

the rationale behind each decision with case study-derived requirements. Finally, based

on a prototype the feasibility of the architecture was shown. Expert interviews were used

to validate that the architecture can be of utility to ASLPs. In the evaluation, it was

concluded that Hypotheses 1 and 2 are valid. The three configuration models can be

used to compose application services like parts in physical manufacturing (Hypothesis 1).

Application system landscape production, following the ISAA, can resemble the production

of modern just-in-time and ETO manufacturers. Customers can place their orders, sales

personnel, possibly assisted by architects, make first application system landscape drafts.

Development may be necessary for individual requests, but mostly available modules can

be used, similar to part libraries in computer-aided manufacturing (Harrison and van Hoek,

2008). The application service is then deployed, and its operation starts. Continuous

billing commences, all with a high degree of automation.

The research goal was reached by showing that the ISAA can increase the efficiency

of application products. It uses a standardized way of describing application services,

152 An Information System Architecture for ASLPs

automated processes, and a modularized product portfolio, which is mirrored technically

by the configuration models.

The next section discusses the contribution of this thesis.

7.2 Contribution

Figure 7.1 provides an overview of the artifact of this thesis: the ISAA. The figure’s left

side shows a production-based view of the ISAA. Various input factors are transformed into

output factors, such as customer requirements and software. Output factors for ASLPs

are application services. In contrast to manufacturers, for IT service providers no factory

exists as a production factor.

Their information system can be considered to include the ASLP’s factory. The

information system and its architecture that includes the workforce, processes, and the

application system landscape are the primary focus of this thesis.

The right side of Figure 7.1 features a T-view of the ISAA. On the upper side, it

shows the spectrum from strategic over tactical to operational considerations. The ISAA

is located closer to operational than to strategic considerations. Operational considerations

include how to deploy application services manually. Strategic considerations include what

types of services can be deployed with the ISAA. Most considerations pertain to tactical

considerations. The focus of the ISAA lies on the domain model, the production execution

system and the application service configuration.

The thesis makes the following contributions. They correspond to the focus displayed

in Figure 7.1.

1. An information system architecture that explores the limits of standardization, au-

tomation, and modularization for application system landscape production.

2. A domain model that explicates the relationships between relevant entities of appli-

cation system landscape production on the layers of business, process, integration,

software, and infrastructure.

3. A prescription of how to compose application system landscapes based on three kinds

of configuration models that can be used analogously to materials in physical product

fabrication: software, infrastructure, and orchestration configuration models.

4. A production execution system that orchestrates the production of application ser-

vices between the enterprise management, IT service management, and IT service

production systems.

This research has implications for practitioners and researchers. By conducting a

comparison, practitioners may use the architecture to evaluate their information system

architecture while seeking to increase efficiency as well as service quality. For researchers,

the architecture contributes to the existing stream of analogy-employing research, in par-

ticular within the area on the industrialization of IT research. This research contributes

Johannes Hintsch, M. Sc. 153

Production-based view of the ISAA T-view of the ISAA

In focusOut of focus

Focus of the thesis

Information system

Application
service

Software

Hardware Other input factors

Customer
requirements

Work force

Processes

Sourced or in-house computing,
networking and storage capabilities

Application system landscape

Enterprise management system(s)

IT service management system(s)

IT service production systems(s)

P
ro

d
u

ct
io

n
In

p
u

t
O

u
tp

u
t

D
o

m
ai

n
 m

o
d

el

B
u

sin
ess à

 P
ro

cess à
 In

tegratio
n

 à
 So

ftw
are à

 In
frastru

ctu
re

ASLP business model

Application service
production process

Virtualization

Hardware

Application system
landscape

Production execution
system

OperationalStrategic Tactical

Application service
configuration

Figure 7.1: Parts of the information system architecture that are in this thesis’ focus.

by concretely and comprehensively testing the limits of transferring automation and stan-

dardization concepts, in particular, ERP and computer-integrated manufacturing, from

fully automated, mass-customized physical goods production to IT service production

by employing the particular case of ASLPs. Furthermore, this research adds theoretical

understanding to the relatively seldom investigated IT service production domain (Hess

et al., 2012).

7.3 Future work

The costs for automation, based on configuration models, were discussed in the evaluation.

However, costs would also be incurred when first implementing the ISAA. For instance,

costs for licenses, customization and development, and training of staff would likely be

incurred. A preliminary analysis of the total cost of ownership for the ISAA would be

valuable. Such an analysis could help companies that would be interested in adopting the

ISAA in their assessment. A total cost of ownership analysis could help them conduct a

cost-benefit analysis. An analysis of the total cost of ownership could contrast different

types of ERP software (e.g., proprietary against open source) or IaaS set-ups (e.g., sourced

or in-house operated).

154 An Information System Architecture for ASLPs

The evaluation included steps EVAL 1 - EVAL 3 of the evaluation approach for

design science research by Sonnenberg and vom Brocke (2012). EVAL 4, the validation

of an instance of the ISAA in a naturalistic setting (Sonnenberg and vom Brocke, 2012),

could be another path of future work. If developing the ISAA further and attempting

to transfer it to a reference model such validation would be necessary. Considerations

for such an implementation would include thoughts on whether the architecture should

be implemented in a big-bang or incremental approach (Davenport, 2000, p. 173-181).

The ISAA could support the incremental approach with recommendations as to which

layers, components, and prescriptions of the ISAA could be implemented together as well

as proposing an order.

Companies might further be motivated to consider the ISAA if it would align with

a standard such as IT4IT. Similarities to IT4IT have already been shown (Hintsch et al.,

2016b) based on IT4IT’s antecedents (Betz, 2011). For instance, the IT service production

system that is not part of the IT4IT reference architecture could be integrated. Also, the

presented application service production process could be defined as an IT4IT scenario (cf.

section sec:rb-itsm-frameworks). Whereas the IT4IT is vendor agnostic and only defines

functional components, the ISAA categorizes the application system landscape in software

packages that are available on the market. An alignment seems promising.

Within the ISAA, application services that are based on existing software may be

provisioned, but new application software development is also addressed. In software

engineering, model-driven development has been used for more than a decade. Deriving or

integrating models for operation from or with models for development could yield efficiency

and effectiveness improvements. An approach that seems natural is to use deployment or

component diagrams of the unified modelling language (UML) for such a purpose, but

other modeling languages might also be viable options. Future work could investigate if

combining or integrating development with operations models is feasible.

Finally, the ISAA advocates the use of ERP software that was initially developed for

manufactures. Hybrid value creation has been practiced for some time (Velamuri et al.,

2011). Physical products are sold with value-adding services. With the proliferation of

the Internet of Things or Industry 4.0, these types of offerings will likely gain market

share. The ISAA could be used to support traditional physical goods production, on the

one hand, and application service provisioning, on the other hand. If for instance, cars

are ordered in a mass customization approach, application services that are operated on

servers controlled by the manufacturer could be deployed as well. This hybrid use of

an ERP system would avoid system proliferation and integrate value creation in a single

ERP system capable of handling both the production of physical products and application

services.

The ISAA promotes standardization, automation, and modularization. Following

these paths of future work, quality and efficiency of IT service production could be incre-

ased within the domain of ASLPs and beyond.

Johannes Hintsch, M. Sc. 155

A Domain model of the ISAA

Figure A.1: The version control system in its relationship with the systems for ITSP and
systems engineering.

156 An Information System Architecture for ASLPs

F
ig

u
re

A
.2

:
V

ie
w

o
f

d
o
m

ai
n

m
o
d

el
th

at
sh

ow
s

en
ti

ti
es

of
al

l
la

y
er

s
as

w
el

l
as

so
m

e
of

th
ei

r
re

la
ti

on
sh

ip
s

(i
n

or
d

er
to

re
ta

in
re

ad
ab

il
it

y,
n

ot
al

l
en

ti
ti

es
or

re
la

ti
o
n

sh
ip

s
co

u
ld

b
e

in
cl

u
d

ed
).

Johannes Hintsch, M. Sc. 157

B Supplementary material for case study

B.1 Overview of cases

Case statistics Interview length
Size Cases Cases Timemin Transcriptswds

Small 9 ERP 24 Min 25 3,380
Medium 4 No ERP 1 Mdn 37 5,649
Large 12 Avg 45 5,667

IT service provider 17 Max 82 12,232
Total 25 Vendor 8 Total 1,121 159,429

min: in minutes, wds: in words

Table B.1: Quantitative overview of the cases and collected data.

158 An Information System Architecture for ASLPs

ID Size1 Description Data sources2

C1 small IT service provider I,O
C2 small Software company I,O
C3 large ERP vendor I,O
C4 small ERP vendor I,O
C5 small ERP vendor I,O
C6 medium ERP vendor I,O
C7 large ERP vendor I,O
C8 large ERP vendor I,O
C9 small ERP vendor I,O
C10 small SaaS ERP provider I,O
C11 medium IT service provider I,O
C12 small IT service provider I,O,W
C13 large IT service provider (internal & external) I,O
C14 large IT service provider (internal & external) I,O,W
C15 medium IT service provider I,O
C16 large IT service provider (internal) I,O
C17 medium IT service provider for precision farming I,O
C18 large IT service provider (internal & external) I,O
C19 small IT service provider I,O
C20 small IT service provider I,O
C21 large ERP vendor I,O
C22 large IT company (hardware, software, servi-

ces)
I,O,W

C23 large IT service provider I,O
C24 large Telecommunications and Internet com-

pany
I,O

C25 large Knowledge intensive company - internal
IT service provider

I,O

1: based on employee size European Commission (2005, p. 14)

2: I (interview transcript), O (information available online), W (workshop documentation)

Table B.2: Full case overview.

Johannes Hintsch, M. Sc. 159

Identifiers in different publications of Hintsch
ID 2015b 2016b 2018 Thesis alias

C1 Case A Alpha
C2 unidentified1

C3 unidentified1

C4 unidentified1

C5 unidentified1

C6 Case C Beta Beta
C7 unidentified1

C8 unidentified1

C9 unidentified1

C10 unidentified1

C11 unidentified1 Gamma
C12 Gamma Gamma
C13 unidentified1

C14 unidentified1 Iota Alpha Alpha
C15 unidentified1

C16 unidentified1 Zeta
C17 unidentified1

C18 Case F
C19 unidentified1

C20 Case B Beta
C21 Case G
C22 unidentified1

C23 Case E Epsilon
C24 Case D Delta
C25 Theta
1: data from this case, although unidentified, was used to compile a list of which business functions
were supported by application systems

Table B.3: Mapping of cases with previous publications.

160 An Information System Architecture for ASLPs

B.2 Question catalogue

1. General company background, including key figures and business models

2. Type and architecture of the employed application systems

a) Use of application systems?

i. Integrated?

ii. Which manufacturer? Or is it custom software?

b) Which departments involved? Which ERP modules are used?

c) Total number of users?

d) Architecture?

3. Internal and external product and service portfolio representation

a) What is the structure of the respective sales product?

b) How are the products represented in the ERP system?

c) Are there any basic products / modules that are used multiple times?

d) Are service level agreements maintained? If so, how are you represented?

e) Do you produce the product entirely by yourself?

f) How are services and products billed?

4. Application system support of core production processes

a) Which core processes do you cover with the ERP system?

i. Planning

ii. Procurement

iii. Manufacture

A. Do you use a different type of IT support in the production process?

B. Can you visualize dependencies between the specification and the pro-

duction of services (e. g. hard disk capacity / CPU capacity for new

products considering the services currently in production)?

C. Can you simulate production alternatives in the specification before-

hand?

D. Project planning of development projects?

iv. Delivery / Performance

A. Provision and billing orchestrated by workflow control?

B. Is it possible to initiate deployment from the ERP system?

v. Return

b) Key figures / metrics

Johannes Hintsch, M. Sc. 161

i. Can you make statements about the profitability of individual products?

ii. Do you have direct indicators for the service phases?

c) Do you use a process framework for the design of service processes (ITIL,

SCOR,...)?

i. If no, why not?

ii. If yes, which parts of it are implemented?

5. Representation of the organization in the application systems

a) Representation of the organization in the general information system?

b) Are there different roles or competence profiles that can be assigned to specific

activities?

Johannes Hintsch, M. Sc. 163

C Supplementary material for EVAL3

C.1 Different variations and phases of the production process

Business pro-
cess

Activity System
Context

Activity
type

Operation [Service request]
Cancel service with repair order SAP-IW51,

SAP-VA01
UIA

Update contract, create a new configuration
of the service with six clients

SAP-VA42 UIA

Create deployment sales order SAP-VA01 UIA

Deployment Create production order SAP-CO01 UIA
Release production order SAP-CO02 UIA
Service deployment PES SYS
[Production order confirmation] SAP ERP UIA

Operation {Service operating} ITSP sy-
stem

SYS

Notify customer SAP-
VL01N

UIA

Billing Bill customer SAP-VF01 UIA

Legend

Activity regular system or user interaction activity, [event], continuous system activity

Application system SAP- precedes SAP ERP transactions:

context VA1[1/2] - Inquiry management (create/change), VA4[1/2] - Contract management

(create/change), VA0[1/2] - Sales order management (create/change), VL0[1/2]N -

Outbound delivery management (create/change), VF0[1/2] - Billing document

management (create/change), CAT2 - Maintaining timesheet data, CO0[1/2] -

Production order management (create/change), MM0[1/2] - Material management

(create/change), CS0[1/2] - Bill of materials management (create/change),

IW5[1/2] - service notification management (create/change)

Activity type UIA - user interaction activity, SYS - system activity

Table C.1: Changing a service parameter in the operation phase.

164 An Information System Architecture for ASLPs

Business pro-
cess

Activity System Context Activity type

Inquiry and or-
der processing

[Incoming customer in-
quiry]
Gather customer requi-
rements

SAP-VA11 UIA

Create contract SAP-VA41 UIA

Engineering Create ETO sales order SAP-VA01 UIA
Create solution design SAP-CAT2, ASL mo-

deller
UIA

Develop orchestration
configuration model

SAP-CAT2, ISAA De-
vOps stack

UIA

Update material master SAP-CAT2, MM01,
CS01

UIA

Perform acceptance test SAP-CAT2, ISAA De-
vOps stack, ITSP sy-
stem

UIA, SYS

Update contract and
ETO sales order

SAP-VA42, SAP-VA02 UIA

Deployment Create production order SAP-CO01 UIA
Release production or-
der

SAP-CO02 UIA

Service deployment PES SYS
[Production order con-
firmation]

SAP ERP

Operation {Service operating} ITSP system SYS

Deployment Notify customer SAP-VL01N UIA

Billing Bill customer SAP-VF01 UIA
{Service billing} PES SYS

Termination Service termination PES SYS

Legend

Activity regular system or user interaction activity, [event], continuous system activity

Application system SAP- precedes SAP ERP transactions:

context VA1[1/2] - Inquiry management (create/change), VA4[1/2] - Contract management

(create/change), VA0[1/2] - Sales order management (create/change), VL0[1/2]N -

Outbound delivery management (create/change), VF0[1/2] - Billing document

management (create/change), CAT2 - Maintaining timesheet data, CO0[1/2] -

Production order management (create/change), MM0[1/2] - Material management

(create/change), CS0[1/2] - Bill of materials management (create/change),

IW5[1/2] - service notification management (create/change)

Activity type UIA - user interaction activity, SYS - system activity

Table C.2: Process steps for deploying an ETO service with a new software configuration
model.

Johannes Hintsch, M. Sc. 165

Business pro-
cess

Activity System Context Activity type

Operation [Service request]
Change software confi-
guration model

SAP-CAT2, ISAA De-
vOps stack

UIA

Test changes SAP-CAT2, ISAA De-
vOps stack, ITSP sy-
stem

UIA, SYS

Update material master SAP-CAT2, MM02
Cancel service with re-
pair order

SAP-IW51, SAP-VA01 UIA

Update contract SAP-VA42 UIA
Create deployment sales
order

SAP-VA01 UIA

Deployment Create production order SAP-CO01 UIA
...

Legend

Activity regular system or user interaction activity, [event], continuous system activity

Application system SAP- precedes SAP ERP transactions:

context VA1[1/2] - Inquiry management (create/change), VA4[1/2] - Contract management

(create/change), VA0[1/2] - Sales order management (create/change), VL0[1/2]N -

Outbound delivery management (create/change), VF0[1/2] - Billing document

management (create/change), CAT2 - Maintaining timesheet data, CO0[1/2] -

Production order management (create/change), MM0[1/2] - Material management

(create/change), CS0[1/2] - Bill of materials management (create/change),

IW5[1/2] - service notification management (create/change)

Activity type UIA - user interaction activity, SYS - system activity

Table C.3: Changing a software configuration model for a customer in the operation phase.

166 An Information System Architecture for ASLPs

Business pro-
cess

Activity System Context Activity type

Operation [Incident]
Change software confi-
guration model

SAP-CAT2, ISAA De-
vOps stack

UIA

Test changes SAP-CAT2, ISAA De-
vOps stack, ITSP sy-
stem

UIA, SYS

Update material master SAP-CAT2, MM02 UIA
Full regression testing SAP-CAT2, ISAA De-

vOps stack, ITSP sy-
stem

UIA, SYS

Customer-wide deploy-
ment

SAP-CAT2, ITSP sy-
stem

UIA, SYS

Notify customers E-Mail UIA

Legend

Activity regular system or user interaction activity, [event], continuous system activity

Application system SAP- precedes SAP ERP transactions:

context VA1[1/2] - Inquiry management (create/change), VA4[1/2] - Contract management

(create/change), VA0[1/2] - Sales order management (create/change), VL0[1/2]N -

Outbound delivery management (create/change), VF0[1/2] - Billing document

management (create/change), CAT2 - Maintaining timesheet data, CO0[1/2] -

Production order management (create/change), MM0[1/2] - Material management

(create/change), CS0[1/2] - Bill of materials management (create/change),

IW5[1/2] - service notification management (create/change)

Activity type UIA - user interaction activity, SYS - system activity

Table C.4: Fixing a bug.

Business pro-
cess

Activity System
Context

Activity
type

Termination [Customer contract expires in n days]

Contact customer regarding extension E-Mail UIA
Extend contract SAP-VA42 UIA

Legend

Activity regular system or user interaction activity, [event], continuous system activity

Application system SAP- precedes SAP ERP transactions:

context VA1[1/2] - Inquiry management (create/change), VA4[1/2] - Contract management

(create/change), VA0[1/2] - Sales order management (create/change), VL0[1/2]N -

Outbound delivery management (create/change), VF0[1/2] - Billing document

management (create/change), CAT2 - Maintaining timesheet data, CO0[1/2] -

Production order management (create/change), MM0[1/2] - Material management

(create/change), CS0[1/2] - Bill of materials management (create/change),

IW5[1/2] - service notification management (create/change)

Activity type UIA - user interaction activity, SYS - system activity

Table C.5: Extending the contract of a service.

Johannes Hintsch, M. Sc. 167

C.2 Manual deployments

i Context Command pi ei wi

1 Horizon [spawn one m1.large instance named ’guaca-server’
of ’Ubuntu Server 14.04 LTS (Trusty Tahr)’]

0:47 0:11 0:02

2 Horizon [associate floating ips for server and one client] 0:06 0:06 0:01
3 Horizon [spawn three m1.small instances named ’guaca-

client’ of ’Windows 2012 Server Evaluation -
IMAGE v6’]

0:32 0:12 0:01

4 Horizon [associate floating ip one client] 0:07 0:04 0:01
5 Horizon [associate floating ip one client] 0:07 0:04 0:01
6 Horizon [associate floating ip one client] 0:07 0:04 0:01
7 WSsh@oc [ssh to server (rs) guaca-server] 0:06 0:15 0:02
8 Bash@rs sudo apt-get update 0:07 0:10 0:01
9 Bash@rs sudo apt-get install –yes libcairo2-dev libjpeg62-

dev libpng12-dev libossp-uuid-dev libfreerdp-dev
libpango1.0-dev libssh2-1-dev libwebp-dev libssl-
dev build-essential maven openjdk-7-jdk nfs-
common tomcat7 mysql-server-5.5 mysql-client-5.5
apache2 libapache2-mod-proxy-html

1:51 0:14 0:01

10 MLIn@ds [set mysql root password to ’root’] 0:04 0:00 0:00
11 Apt-

get@ds
[installation continues] 0:00 2:28 0:00

12 Bash@rs sudo mount 10.0.20.22:/network files /mnt/ 0:08 0:00 0:02
13 Bash@rs sudo tar -xzf /mnt/guac/guacamole-client-0.9.13-

incubating.tar.gz -C /opt/
0:13 0:01 0:01

14 Bash@rs sudo tar -xzf /mnt/guac/guacamole-server-0.9.13-
incubating.tar.gz -C /opt/

0:05 0:01 0:00

15 Bash@rs sudo chown -R root:root /opt 0:05 0:00 0:00
16 Bash@rs cd /opt/guacamole-server-0.9.13-incubating/ 0:04 0:00 0:02

Legend: Horizon - OpenStack Horizon web interface, WSsh - Putty on Windows, oc - operator computer, rs -
remote desktop server, MLIn - MySQL installer, MLSh - MySQL shell, wc - windows client, Cmd - Windows
shell, {value that varies between deployments}, [complexer gui command or entered described as text], times
shown as mm:ss

Table C.6: Manual deployment of the remote desktop service (1/4).

168 An Information System Architecture for ASLPs

i Context Command pi ei wi

17 Bash@rs sudo /opt/guacamole-server-0.9.13-
incubating/configure –with-init-dir=/etc/init.d

0:13 0:20 0:01

18 Bash@rs sudo make -C /opt/guacamole-server-0.9.13-
incubating

0:06 1:03 0:02

19 Bash@rs sudo make install -C /opt/guacamole-server-0.9.13-
incubating

0:06 0:06 0:02

20 Bash@rs sudo ldconfig 0:03 0:00 0:01
21 Bash@rs sudo echo GUACA-

MOLE HOME=/opt/guacamole-server-0.9.13-
incubating — sudo tee -a /etc/environment

0:42 0:00 0:06

22 Bash@rs sudo echo GUACA-
MOLE HOME=/opt/guacamole-server-0.9.13-
incubating — sudo tee -a /etc/default/tomcat7

0:30 0:00 0:00

23 Bash@rs cd /opt/guacamole-client-0.9.13-incubating 0:04 0:00 0:12
24 Bash@rs sudo mvn package 0:03 1:48 0:02
25 Bash@rs sudo cp guacamole/target/guacamole-0.9.13-

incubating.war /var/lib/tomcat7/webapps
0:06 0:00 0:09

26 Bash@rs sudo cp /mnt/guac/guacamole.properties
/opt/guacamole-server-0.9.13-incubating/

0:17 0:00 0:00

27 Bash@rs sudo chmod 644 /opt/guacamole-server-0.9.13-
incubating/guacamole.properties

0:12 0:00 0:01

28 Bash@rs sudo mkdir /opt/guacamole-server-0.9.13-
incubating/lib

0:08 0:00 0:01

29 Bash@rs sudo mkdir /opt/guacamole-server-0.9.13-
incubating/extensions

0:08 0:00 0:00

30 Bash@rs sudo cp /mnt/guac/guacamole-auth-jdbc-mysql-
0.9.13-incubating.jar /opt/guacamole-server-
0.9.13-incubating/extensions

0:12 0:00 0:04

31 Bash@rs sudo chmod 655 /opt/guacamole-server-0.9.13-
incubating/extensions/guacamole-auth-jdbc-
mysql-0.9.13-incubating.jar

0:15 0:00 0:00

32 Bash@rs sudo cp /mnt/guac/mysql-connector-java-
5.1.44-bin.jar /opt/guacamole-server-0.9.13-
incubating/lib

0:08 0:00 0:03

33 Bash@rs sudo chmod 655 /opt/guacamole-server-0.9.13-
incubating/lib/mysql-connector-java-5.1.44-bin.jar

0:11 0:00 0:00

34 Bash@rs mysql -u root -proot 0:06 0:00 0:03
35 MLSh@rs CREATE DATABASE guacamole db CHARAC-

TER SET utf8;
0:12 0:00 0:01

36 MLSh@rs GRANT ALL PRIVILEGES ON guacamole db.*
TO ’guacamole user’@’localhost’ IDENTIFIED
BY ’root’;

0:24 0:00 0:02

37 MLSh@rs FLUSH PRIVILEGES; 0:05 0:00 0:01
38 MLSh@rs quit 0:01 0:00 0:00

Legend: Horizon - OpenStack Horizon web interface, WSsh - Putty on Windows, oc - operator computer, rs -
remote desktop server, MLIn - MySQL installer, MLSh - MySQL shell, wc - windows client, Cmd - Windows
shell, {value that varies between deployments}, [complexer gui command or entered described as text], times
shown as mm:ss

Table C.7: Manual deployment of the remote desktop service (2/4).

Johannes Hintsch, M. Sc. 169

i Context Command pi ei wi

39 Bash@rs mysql -u root -proot guacamole db <
/mnt/guac/001-create-schema.sql

0:13 0:00 0:02

40 Bash@rs mysql -u root -proot guacamole db <
/mnt/guac/002-create-admin-user.sql

0:03 0:00 0:01

41 Bash@rs cd 0:01 0:00 0:02
42 Bash@rs vi /mnt/guac/connections.sql.sample 0:06 0:00 0:00
43 Vi@rs :%s/ip address/[client1-ip]/g 0:16 0:02 0:01
44 Vi@rs :w connections1.sql 0:06 0:00 0:01
45 Vi@rs u 0:00 0:00 0:00
46 Vi@rs :%s/ip address/[client2-ip]/g 0:18 0:00 0:01
47 Vi@rs :w connections2.sql 0:04 0:00 0:01
48 Vi@rs u 0:00 0:00 0:00
49 Vi@rs :%s/ip address/[client3-ip]/g 0:06 0:00 0:03
50 Vi@rs :wq connections3.sql 0:20 0:00 0:01
51 Bash@rs mysql -u root -proot guacamole db < connecti-

ons1.sql
0:08 0:00 0:06

52 Bash@rs mysql -u root -proot guacamole db < connecti-
ons2.sql

0:01 0:00 0:01

53 Bash@rs mysql -u root -proot guacamole db < connecti-
ons3.sql

0:01 0:00 0:01

54 Bash@rs sudo a2enmod proxy 0:05 0:00 0:01
55 Bash@rs sudo a2enmod proxy wstunnel 0:03 0:00 0:01
56 Bash@rs sudo a2enmod proxy http 0:02 0:00 0:00
57 Bash@rs nslookup [rs-ip] 0:07 0:00 0:04
58 Bash@rs sudo vi /etc/apache2/sites-enabled/000-

default.conf
0:07 0:00 0:06

59 Vi@rs [erase and add: <VirtualHost *:80> Ser-
verName {rs-dns-name} <Location />
Order allow,deny Allow from all Proxy-
Pass http://localhost:8080/guacamole-0.9.13-
incubating/ flushpackets=on ProxyPassRe-
verse http://localhost:8080/guacamole-0.9.13-
incubating/ ProxyPassReverseCookiePath
/guacamole-0.9.13-incubating/ / </Location>
<Location /websocket-tunnel> Order
allow,deny Allow from all ProxyPass
ws://localhost:8080/guacamole-0.9.13-
incubating/websocket-tunnel ProxyPassRe-
verse ws://localhost:8080/guacamole-0.9.13-
incubating/websocket-tunnel </Location>
</VirtualHost>]

0:44 0:00 0:00

60 Vi@rs :wq 0:01 0:00 0:00
61 Bash@rs sudo service guacd restart 0:16 0:01 0:05

Legend: Horizon - OpenStack Horizon web interface, WSsh - Putty on Windows, oc - operator computer, rs -
remote desktop server, MLIn - MySQL installer, MLSh - MySQL shell, wc - windows client, Cmd - Windows
shell, {value that varies between deployments}, [complexer gui command or entered described as text], times
shown as mm:ss

Table C.8: Manual deployment of the remote desktop service (3/4).

170 An Information System Architecture for ASLPs

i Context Command pi ei wi

62 Bash@rs sudo service tomcat7 restart 0:05 0:06 0:01
63 Bash@rs sudo service apache2 restart 0:02 0:03 0:01
64 Bash@rs exit 0:01 0:00 0:00
65 WSsh@oc [ssh to server (wc) windows client 1] 0:12 0:03 0:22
66 Cmd@wc1 net use N:\\host-10-0-20-

22.openstacklocal\network files /user:ubuntu
f834jSX

0:26 0:01 0:00

67 Cmd@wc1 cmd /C ”start /wait msiexec /qn /i
N:\\LibreOffice 5.4.3 Win x64.msi /log
C:\\libreOffice install.log INSTALLLOCA-
TION=”C:\\Program Files\LibreOffice” IS-
CHECKFORPRODUCTUPDATES=0 REGIS-
TER ALL MSO TYPES=1 RebootYesNo=No”

0:07 0:57 0:00

68 Cmd@wc1 net user Administrator RemDesk-001 0:09 0:00 0:04
69 Cmd@wc1 exit 0:01 0:00 0:00
70 WSsh@oc [ssh to server (wc) windows client 2] 0:12 0:03 0:22
71 Cmd@wc2 net use N: \\host-10-0-20-

22.openstacklocal\network files /user:ubuntu
f834jSX

0:26 0:01 0:00

72 Cmd@wc2 cmd /C ”start /wait msiexec /qn /i
N:\\LibreOffice 5.4.3 Win x64.msi /log
C:\\libreOffice install.log INSTALLLOCA-
TION=”C:\\Program Files\LibreOffice” IS-
CHECKFORPRODUCTUPDATES=0 REGIS-
TER ALL MSO TYPES=1 RebootYesNo=No”

0:07 0:53 0:00

73 Cmd@wc2 net user Administrator RemDesk-002 0:10 0:00 0:03
74 Cmd@wc2 exit 0:01 0:00 0:00
75 WSsh@oc [ssh to server (wc) windows client 3] 0:12 0:03 0:20
76 Cmd@wc3 net use N: \\host-10-0-20-

22.openstacklocal\network files /user:ubuntu
f834jSX

0:26 0:01 0:00

77 Cmd@wc3 cmd /C ”start /wait msiexec /qn /i
N:\\LibreOffice 5.4.3 Win x64.msi /log
C:\\libreOffice install.log INSTALLLOCA-
TION=”C:\\Program Files\LibreOffice” IS-
CHECKFORPRODUCTUPDATES=0 REGIS-
TER ALL MSO TYPES=1 RebootYesNo=No”

0:06 0:59 0:00

78 Cmd@wc3 net user Administrator RemDesk-003 0:09 0:00 0:04
79 Cmd@wc3 exit 0:01 0:00 0:00

Total 14:42 10:20 3:02

Legend: Horizon - OpenStack Horizon web interface, WSsh - Putty on Windows, oc - operator computer, rs -
remote desktop server, MLIn - MySQL installer, MLSh - MySQL shell, wc - windows client, Cmd - Windows
shell, {value that varies between deployments}, [complexer gui command or entered described as text], times
shown as mm:ss

Table C.9: Manual deployment of the remote desktop service (4/4).

Johannes Hintsch, M. Sc. 171

i Context Command pi ei wi

1 Horizon [spawn one m1.xlarge instance named ’sap-server’
of ’SAP SLES 11 SP3.x86 64-0.0.7’]

0:23 0:10 0:02

2 Horizon [associate floating ip] 0:05 0:04 0:04
3 Horizon [create volume with 200 GB] 0:12 0:06 0:02
4 Horizon [attach volume as /dev/vdb with ss] 0:05 0:04 0:08
5 WSsh@oc [ssh to server (ss) sap-server, with x-forwarding] 0:36 0:04 0:04
6 Bash@ss groupadd -g 1000 sapinst 0:04 0:02 0:05
7 Bash@ss usermod -G sapinst root 0:06 0:00 0:01
8 Bash@ss mkdir /sapinst 0:03 0:00 0:01
9 Bash@ss mount 10.0.20.22:/network files /mnt/ 0:09 0:00 0:01
10 Bash@ss echo 1 > /sys/bus/pci/rescan 0:12 0:00 0:01
11 Bash@ss sfdisk –force /dev/vdb < /mnt/sap-host-

setup/vdb.layout
0:13 0:02 0:01

12 Bash@ss ls /dev/vdb1 0:03 0:00 0:02
13 Bash@ss mkswap /dev/vdb1 0:04 0:04 0:02
14 Bash@ss swapon /dev/vdb1 0:09 0:00 0:00
15 Bash@ss mkfs.ext3 /dev/vdb2 0:07 0:52 0:01
16 Bash@ss mount /dev/vdb2 /sapinst 0:10 0:01 0:01
17 Bash@ss chown root:sapinst /sapinst 0:05 0:00 0:01
18 Bash@ss chmod 775 /sapinst 0:03 0:00 0:02
19 Bash@ss mkdir /sapinst/sapdb 0:04 0:00 0:02
20 Bash@ss mkdir /sapinst/sapmnt 0:06 0:00 0:01
21 Bash@ss mkdir /sapinst/usrsap 0:03 0:00 0:00
22 Bash@ss chmod -R 755 /sapinst/* 0:07 0:00 0:01
23 Bash@ss ln -s /sapinst/sapdb /sapdb 0:07 0:00 0:01
24 Bash@ss ln -s /sapinst/sapmnt /sapmnt 0:07 0:00 0:01
25 Bash@ss ln -s /sapinst/usrsap /usr/sap 0:09 0:00 0:01
26 Bash@ss mkdir /sapinst/installfiles 0:05 0:00 0:00
27 Bash@ss bash /mnt/jdk-6u45-linux-x64-rpm.bin 0:03 0:21 0:03
28 Bash@ss cp -r /mnt/sap erp files/* /sapinst/installfiles 0:11 12:04 0:02
29 Bash@ss cd /sapinst/installfiles/SPM/SPM extracted 0:15 0:00 0:22
30 Bash@ss echo host{last-ip-digit-group} > /etc/hostname 0:27 0:00 0:49
31 Bash@ss hostname -F /etc/hostname 0:08 0:00 0:00
32 Bash@ss vi /etc/hosts 0:04 0:00 0:05
33 Vi@ss [add hostnames 10.0.20.{last-ip-digit-group}

host{last-ip-digit-group}.openstacklocal host{last-
ip-digit-group} host-10-0-20-{last-ip-digit-
group}.openstacklocal]

0:36 0:00 0:00

34 Vi@ss :wq 0:01 0:00 0:00
35 Bash@ss ./sapinst 0:10 0:31 0:01
36 Sins@ss [the following installation option is used SAP Net-

Weaver 7.0 including Enhancement Package 2 >
Software life cycle Options > System Copy >
MaxDB > Target System Installation > Central
System > Based on AS ABAP > Central System
several further parameters need to be entered]

7:20 430:52 0:00

Total 12:52 445:17 2:08

Legend: Horizon - OpenStack Horizon web interface, WSsh - Putty on Windows, oc - operator computer, ss
- SAP ERP server, {value that varies between deployments}, [complexer gui command or entered described as
text], times shown as mm:ss

Table C.10: Manual deployment of the SAP ERP service.

172 An Information System Architecture for ASLPs

i Context Command pi ei wi

1 Horizon [spawn two m1.small instances named ’wordpress-
mysql’ of ’Ubuntu Server 14.04 LTS (Trusty Tahr)’]

0:28 0:11 0:02

2 Horizon [associate floating ip with webserver instance
(wordpress-mysql-1)]

0:05 0:04 0:02

3 Horizon [associate floating ip with database instance
(wordpress-mysql-2)]

0:03 0:04 0:03

4 WSsh@oc [ssh to database server (ds) wordpress-mysql-2] 0:06 0:04 0:09
5 Bash@ds sudo apt-get update 0:01 0:09 0:01
6 Bash@ds sudo apt-get install –yes mysql-server-5.5 mysql-

client-5.5
0:18 0:03 0:00

7 MLIn@ds [set mysql root password to ’wordpress’] 0:04 0:00 0:00
8 Apt-

get@ds
[installation continues] 0:00 0:21 0:00

9 Bash@ds mysql -u root -p 0:07 0:00 0:02
10 MLSh@ds CREATE DATABASE wordpress CHARACTER

SET utf8;
0:12 0:00 0:02

11 MLSh@ds GRANT ALL PRIVILEGES ON wordpress.* TO
’wordpress’@’{ws-ip}’ IDENTIFIED BY ’word-
press’;

0:32 0:00 0:03

12 MLSh@ds FLUSH PRIVILEGES; 0:07 0:00 0:01
13 MLSh@ds quit 0:01 0:00 0:01
14 Bash@ds sudo vi /etc/mysql/my.cnf 0:04 0:01 0:00
15 Vi@ds [set bind-address to 0.0.0.0 -> bind-address =

0.0.0.0]
0:12 0:00 0:00

16 Vi@ds :wq 0:05 0:03 0:01
17 Vi@ds sudo service mysql restart 0:01 0:00 0:01
18 Bash@ds exit 0:01 0:00 0:00
19 WSsh@oc [ssh to webserver server (ds) wordpress-mysql-1] 0:09 0:04 0:01
20 Bash@ws wget http://wordpress.org/wordpress-3.8.tar.gz 0:12 0:04 0:00
21 Bash@ws tar xvfz wordpress-3.8.tar.gz 0:06 0:01 0:00
22 Bash@ws sudo chown -R www-data:www-data wordpress 0:07 0:00 0:02
23 Bash@ws sudo chmod -R 755 wordpress 0:07 0:00 0:01
24 Bash@ds sudo apt-get update 0:03 0:09 0:01
25 Bash@ws sudo apt-get install –yes apache2 php5-mysql

libapache2-mod-php5
0:18 0:19 0:01

26 Bash@ws sudo rm -rf /var/www/html/index.html 0:06 0:00 0:01
27 Bash@ws sudo mv wordpress/* /var/www/html 0:09 0:00 0:02
28 Bash@ws cd /var/www/html 0:10 0:00 0:01
29 Bash@ws sudo cp wp-config-sample.php wp-config.php 0:11 0:00 0:00
30 Bash@ws sudo vi wp-config.php 0:06 0:01 0:03
31 Vi@ws [create database connection, write: de-

fine(’DB NAME’, ’wordpress’); de-
fine(’DB USER’, ’wordpress’); de-
fine(’DB PASSWORD’, ’wordpress’); de-
fine(’DB HOST’, ’{ds-ip}’);]

0:36 0:00 0:00

32 Vi@ws :wq 0:02 0:00 0:00
33 Bash@ws sudo a2enmod mpm prefork 0:05 0:01 0:00
34 Bash@ws sudo service apache2 restart 0:06 0:02 0:01
35 Bash@ws nslookup {floating-ip} 0:05 0:01 0:02

Total 5:05 1:42 0:44

Legend: Horizon - OpenStack Horizon web interface, WSsh - Putty on Windows, oc - operator computer, ds
- database server, ws - web server, MLIn - MySQL installer, MLSh - MySQL shell, {value that varies between
deployments}, [complexer gui command or entered described as text], times shown as mm:ss

Table C.11: Manual deployment of the CMS (with MySQL).

Johannes Hintsch, M. Sc. 173

C.3 Automated deployments

The LOC measurements of Tables C.12, C.13, and C.14 were performed with the tool

github.com/AlDanial/cloc in version 1.74. The following files and directories were ignored

(Puppet, Inc., 2018)

• files with extension .md (markdown files are used for documentation)

• files with extension .json (json files contain metadata and checksums)

• files with extension .po (po files contain localizations)

• directory files (contains configuration files)

• directory templates (contains template files that become configuration files)

• directory tests (contains tests for the module

• directory spec (contains tests for plugins)

Code in the following domain-specific and general purpose programming languages

was counted (Puppet, Inc., 2018):

• Ruby

• Puppet

• Yaml

Configuration model type Creator Name Child Version LOC

Orchestration jhintsch oc wordpress 0.0.1 63
Software jhintsch ac liboff win 0.0.1 11
Software jhintsch ac remdesk 0.0.1 190
Software puppetlabs apache 1.10.0 4.765
Software puppetlabs mysql 3.11.0 2.310
Software puppetlabs stdlib x 4.21.0 4.908
Software puppetlabs concat x 2.2.1 454
Software puppetlabs tomcat x 1.7.0 1.771

Total 14.472

Table C.12: Structure of the remote desktop service and LOC for each model.

github.com/AlDanial/cloc

174 An Information System Architecture for ASLPs

Configuration model type Creator Name Child Version LOC

Orchestration jhintsch oc saperp 0.0.1 42
Software jhintsch sc saperp 0.0.1 183

Total 225

Table C.13: Structure of the SAP ERP service and LOC for each model.

Configuration model type Creator Name Child Version LOC

Orchestration jhintsch oc wordpress 0.0.1 89
Software hunner wordpress 0.0.1 306
Software puppetlabs apache 1.10.0 4.765
Software puppetlabs mysql 3.9.0 2.160
Software puppetlabs stdlib x 4.12.0 3.952
Software puppetlabs concat x 2.2.20 394

Total 11.666

Table C.14: Structure of the CMS (with MySQL) and LOC for each model.

System context Step avg

PE system Get models 0:00:23
PE system Post models 0:00:00
IaaS system Setup of instances 0:00:30
PE system Connection configuration 0:08:10
Configuration agent Install package dependencies 0:02:22
Configuration agent Store and extract files of guacamole 0:00:01
Configuration agent Setup environment variables 0:00:00
Configuration agent Install guacamole server 0:01:31
Configuration agent Install guacamole web client 0:01:44
Configuration agent Setup Apache Tomcat 0:00:18
Configuration agent Setup Apache HTTP Server 0:00:12
Configuration agent Install MySQL and setup database 0:00:28
Configuration agent Load remote desktop connections into database 0:00:00
Configuration agent Mount network dir 0:00:03
Configuration agent Install LibreOffice 0:02:54

Times written format hh:mm:ss , avg - average

Table C.15: Automated deployment of the remote desktop service with three small clients.

Johannes Hintsch, M. Sc. 175

System context Step avg

PES Get models 0:00:02
PES Post models 0:00:00
IaaS Instance setup 0:00:38
PES Connection configuration 0:01:27
Configuration agent Configure user 0:00:00
Configuration agent Configure hostnames 0:00:00
Configuration agent Mount and partition volume 0:00:36
Configuration agent Mount network storage 0:00:00
Configuration agent Create directory structure 0:00:03
Configuration agent Install Java 0:00:16
Configuration agent Copy installation files 0:09:45
Configuration agent Execute SAPinst 7:27:58

Times written format hh:mm:ss , avg - average

Table C.16: Automated deployment of SAP ERP with three small clients.

System context Step avg

PES Get models 0:00:18
PES Post models 0:00:00
IaaS Instance setup 0:00:25
PES Connection configuration 0:02:21
Configuration agent Setup MySQL 0:00:24
Configuration agent Setup Wordpress 0:00:04
Configuration agent Setup Apache and Vhost 0:00:23

Times written format hh:mm:ss , avg - average

Table C.17: Automated deployment of CMS (with MySQL).

176 An Information System Architecture for ASLPs

C.4 Presentation for expert interviews

26.12.2017

1

Faculty of Computer Science
Otto von Guericke University Magdeburg

Magdeburg Research and Competence Cluster

Johannes Hintsch

johannes.hintsch@ovgu.de
http://mrcc.ovgu.de/

12/26/2017

Industrialization of IT
An Information System Architecture for
Application System Landscape Production

12/26/2017 1 Information System Architecture for Application System Landscape Production

Motivation

„Today, the industrialization of IT services seems to be a distance
vision.“ (Erbes et al. 2012)

Employee of large IT service provider reported Industrialization of IT
was implemented by 2012 (itSMF LIVE! April 2015)

Cars are produced just-in-time, automatically and customer-
configured with a dominant design (BMW Leipzig plant starts
producing in 2005)

12/26/2017 2 Information System Architecture for Application System Landscape Production

Goal

 Overall goal: Increase the efficiency and quality of IT service provisioning

 Employ industrialization principles
o Standardization
o Automation
o Modularization

 Building blocks
o Integrated application systems

to support service production
o Operations automation approaches

 Outcome: An information system architecture supporting a full life-cycle
application system landscape production
o IT services prescribed as being composed of three types of configuration

models
o Achieves a composition of (IT) application services comparable to physical parts
o Further supports their management and automated production within an ERP

system.

Domain

Process Application system landscape

Sof tware
configuration model

Or chestration
configuration model

Infrastructure
configuration model

Application
Service

Resource Sof tware

 uses

Activity

performs

1..* 1..*

1..* 1..*

12/26/2017 3 Information System Architecture for Application System Landscape Production

 Targeted Companies: Similar to the general Application
Service Provider

 Application System Landscape Provider (ASLP) focus on
provisioning full application system landscapes for each
customer

Narrowing the Scope

Customer C

Customer A

Customer B

12/26/2017 4 Information System Architecture for Application System Landscape Production

Domain

Information System Architecture for ASLPs

Process Application system landscape

Software
configuration model

Orchestration
configuration model

Infrastructure
configuration model

Application
Service

Resource Software

uses

Activity

performs

1..* 1..*

1..* 1..*

12/26/2017 5 Information System Architecture for Application System Landscape Production

Configuration Models

Figure C.1: Slide deck of presentation to inform experts (Slides 0 - 5).

Johannes Hintsch, M. Sc. 177

26.12.2017

2

12/26/2017 6 Information System Architecture for Application System Landscape Production

Configuration Models

12/26/2017 7 Information System Architecture for Application System Landscape Production

Configuration of a Wordpress CMS Service

12/26/2017 8 Information System Architecture for Application System Landscape Production

IT Service Provider Application System Landscapes in
Practice

12/26/2017 9 Information System Architecture for Application System Landscape Production

Three Sample ASLPs

Case
Size

(employee count)
Business Model

Alpha Large

Global subsidiary, ASLP business segment comprises:

• enterprise application services based on sourced standard software.

• services are provided from own data centers

Customization and consulting services are offered in addition to the

application services.

• data center-backed IaaS capabilities were added to provider's portfolio

Beta Medium

Company markets in-house developed enterprise application software:
• customers can operate on-premises
• customers can use managed service offerings under which landscapes

are operated in the two data centers of the provider
Consulting is offered in addition

Gamma Small

Company deploys and operates highly standardized enterprise
application system landscapes
• based on sourced standard application software

• customers use software for training
Company gradually extends its offering to IaaS services

12/26/2017 10 Information System Architecture for Application System Landscape Production

Application System Landscape

12/26/2017 11 Information System Architecture for Application System Landscape Production

Storing Data on Application Services in the ERP System

Figure C.2: Slide deck of presentation to inform experts (Slides 6 - 11).

178 An Information System Architecture for ASLPs

26.12.2017

3

12/26/2017 12 Information System Architecture for Application System Landscape Production

Realized Application Services for Evaluation

Application
Service

Type Software Operating Systems

Remote
desktop

BTO Guacamole, MySQL,
Apache Tomcat, and
other dependencies

Ubuntu Server 1404,
Windows Server 2012

SAP ERP BTO SAP ERP 6.04 SP 13
NetWeaver 7.01 SP 13
with GBI 2.20r001

SLES 11 with SAP
dependencies

Content
management
system (CMS)

ETO Apache HTTP server,
MySQL, Wordpress,
and other
dependencies

Ubuntu Server 1404

12/26/2017 13 Information System Architecture for Application System Landscape Production

Two Scenarios

 Mass customization with Build-to-order
o Parameterization

 Individualized landscapes
o Projects to create individual configuration models

12/26/2017 14 Information System Architecture for Application System Landscape Production

Inquiry & Order Processing

12/26/2017 15 Information System Architecture for Application System Landscape Production

Engineering

 Based on UML deployment diagrams, application system
landscapes are drafted

 Export into orchestration configuration model with XSLT-
based language transformations, for automated deployment

 Early ERP data-based price estimates possible

12/26/2017 16 Information System Architecture for Application System Landscape Production

Engineering

 Employees enter time spent
developing on each
configuration model via
time tracking system

 Managed in project

 Profitability analysis per
configuration model

12/26/2017 17 Information System Architecture for Application System Landscape Production

Deployment

Production and logistics module Production execution system

Production
order

Figure C.3: Slide deck of presentation to inform experts (Slides 12 - 17).

Johannes Hintsch, M. Sc. 179

26.12.2017

4

12/26/2017 18 Information System Architecture for Application System Landscape Production

Billing

 Material-based cost calculation as a basis for billing:

 Two modes of continuous billing:
Fixed price

regardless of volume
Pay-per-use

12/26/2017 19 Information System Architecture for Application System Landscape Production

Operation and Termination

 Operation
o Changes regarding the parameterization
o Update / replacement of configuration models
o Realized with return orders

 Termination

12/26/2017 20 Information System Architecture for Application System Landscape Production

Summary

 An ERP system-based information system for IT service providers
who provide application system landscapes

 Application system landscapes defined with three configuration
models
o Software
o Orchestration
o Infrastructure

 Arbitrary application software can be ‘wrapped‘ with configuration
models

 Operation automation know-how embedded in configuration
models, various software stacks can be deployed

 Automatic provisioning of landscapes

 Early price-estimates for complex landscapes possible

Faculty of Computer Science
Otto von Guericke University Magdeburg

Magdeburg Research and Competence Cluster

Johannes Hintsch

johannes.hintsch@ovgu.de
http://mrcc.ovgu.de/

12/26/2017

Questions?

12/26/2017 22 Information System Architecture for Application System Landscape Production

Figure C.4: Slide deck of presentation to inform experts (Slides 18 - 21).

180 An Information System Architecture for ASLPs

C.5 Questions for expert interviews

1. Opening question

a) How do you assess the increasing standardization and automation in IT?

2. Application services

a) The architecture proposes the reuse of configuration models between different

application services provided to customers. Does this reuse increase overall

efficiency? If not, what is problematic?

b) All operational tasks are recorded in configuration models. Expenses incurred

can be directly allocated to these models. Is this helpful in determining the

profitability of products? If no, why not?

c) Application services are compiled from configuration models. The development

of these models entails costs that can be attributed to the models. This ma-

kes it easy to determine the costs for an application system landscape before

engineering. Is this determinability helpful? If no, why not?

d) Can you imagine application services that cannot be implemented with the

architecture? If so, what are they?

e) Service levels are used in the architecture to signal to the helpdesk which re-

sponse times have been agreed upon or to quantify the agreed service availabi-

lity. Is it sufficient looking at the current standard practice? If not, how should

the agreements be extended?

f) Two types of service settlement are addressed: pay-per-use and fixed price

regardless of volume. Are these types of settlement sufficient? If not, which

settlement types still need to be included?

g) In principle, there are two types of services: Engineer-to-order and build-to-

order. Are these two types sufficient? If not, what other type should be added?

h) Is the automated provision and operation of application services as described

above practicable and useful? If no, why not?

3. Application system landscape

a) The application system landscape of the information system architecture has

an ERP system as the central leading system. Here, the application services

are not only stored as sales products but are represented in their complete

structure. Does storing this complete storage make sense? If no, why not?

b) Copies of the IaaS instances can be made available to the customer when ter-

minating application services. Is this service sufficient upon termination of the

contract or would it have to be extended?

Johannes Hintsch, M. Sc. 181

c) The concept requires the entire infrastructure layer of the IT stack to be pro-

vided by IaaS software. Can this requirement be met? If not, how should the

architecture be adapted?

d) The application systems of the information architecture essentially comprise

three types of application systems: Enterprise Management, IT Service Mana-

gement, and IT Service Production Systems. Security & audit, systems engi-

neering, and monitoring & analysis systems are other systems that are not in

focus. Does this selection correspond to the most critical systems of ASLP? If

not, how should the selection be adjusted?

4. General

a) If you were an ASLP and had sufficient means to implement the information

system architecture, would you implement it? If no, what would have to be

adjusted? What would be the criteria for introducing the architecture?

b) Does the proposed information system architecture increase the quality and

efficiency of the creation of application system landscapes?

C.6 Transcripts of expert interviews

The full German transcripts were translated with a free online translation service (available

at https://www.deepl.com/translator) and edited for correctness manually afterwards.

C.6.1 Interview 1

Presentation is started and then is paused at slide 3.1

Res. A question, Johannes, you are very much interested in processes, systems, do you also2

consider the agile environment? If you use waterfall, you use Scrum, use Kanban?3

Int. I’m not covering it in detail, but I would say that the architecture is basically compa-4

tible with different software engineering process models. Of course, this is something5

else when such a landscape is going live and then used compared to normal software6

development. There, you can continuously add features. But, the fact that a service7

can change is of course considered.8

Res. You must be familiar with Docker. You can run applications where your main9

infrastructure is different from the application in the Docker container. So you also10

have mix models, so that you really define Infrastructure as a Service, with, ok this11

is my platform. Nowadays, people say AWS1 or Microsoft is the non-plus ultra in the12

areas, at the push of a button, and then they roll it out. And the application itself13

then runs in a Docker container and then you are completely independent again what14

you take for an operating system. That means you can also run matrix operating15

systems without disturbing each other anyway.16

1Amazon web services (AWS)

https://www.deepl.com/translator

182 An Information System Architecture for ASLPs

Int. Exactly, the applications can be very strongly encapsulated. That is one of the core17

themes of the architecture.18

Res. Yes, the infrastructure and platform level, you can almost say that they merge. If19

you’re using something like Spring Boot, you don’t have to worry about whether20

your operating team will come along at all. Because then you define in principle the21

complete complexity only about the software layer and the guys in the company do22

nothing more than put up boxes. So even my company has three different strategies23

because we were separated. And that is very different. The company daughter where24

I am now, we’re going in the direction of Kubernetes. So basically learn from the big25

ones. Google, Netflix and Co and what a management model they have, they are26

very strong. And you really notice how this old viewpoint, ERP and SAP really rubs27

off on the new viewpoint: speed. And, we are right in the middle of it. That’s why28

I can tell you so much about what different problem areas exist there. I always say29

it’s a triad: you have the technology, the culture and the organization that you have30

to take with you. The technology is here. All you have to do is see if you can turn31

them around and make sure your organization grows with you. And culture must32

be created. I don’t know how you deal with these topics afterward, that you have to33

create the environment. We notice more and more that this classical environment,34

in which many of us have learned. We are just realizing that we have to put in an35

extreme change management to keep up with this.36

Presentation is continued and finished.37

Int. Now we are done with the presentation. Do you have any questions yet to clarify?38

Res. You have put a lot of effort into it, one can tell. You have also combined the classic39

SAP world with the new Operation Toolings. Well, that’s got hands and feet. I can40

give you some insights from my company. There are basically two currents. One41

comes from the classic SAP corner. Of course, we have an SAP Competence Center42

which is responsible for SAP support. They would basically see your proposal as the43

right one and apply it. And then there is the group of non-SAP operators, who see44

exactly the opposite approach as the right one. This means that SAP has a major45

disadvantage. There are several disadvantages with such a large ERP system. It46

is very difficult to find employees, which can definitely be an exclusion criterion to47

adopt such a strategy. When you try to find cracks for SAP on the market, it is very48

difficult, and when you find and hire them, you become poor as a company. The49

second factor is basically SAP’s licensing model. You got a vendor lock-in. And for50

a company in the e-commerce sector where the collection of pennies is considered to51

be attractive, then this can definitely be an exclusion criterion. If you choose the52

approach for Single-Point of Truth, this is the right one. If you are now a company53

in the e-commerce sector, where you have a lot of different business lines, you would54

make yourself as much as possible dependent on this small team that works with55

this system. So everyone’s waiting to get through this bottleneck. Now, this is not56

Johannes Hintsch, M. Sc. 183

a scientific consideration, but rather a practical one.57

Int. The architecture can not only be implemented with SAP. There could also be another58

ERP system as the core system. The orchestration functionality is not implemented59

in the SAP System. The application services, containers or system landscapes are60

described in such a way that they can be recorded as standardized materials in any61

ERP system so that the development effort in the ERP system would be mainly62

a customizing effort. The functionality I need is implemented in this production63

execution system.64

Res. The other trend tends to go in the other direction, saying that basically, the ERP65

system is the system receiving from the preliminary systems. With all the disad-66

vantages that come with it. That means you would use such an ERP system as67

a consolidation tool in such a distributed organization. Because then you can also68

make mergers and acquisitions quite easily. Basically, they use the ERP system as69

credit in the first step, and then they may use the ERP system as debit. If you70

look at how fast the company has grown in recent years, and you would choose71

this approach, from the central ERP system everything outward, you would have no72

chance to exist in the market, because such migration projects are very expensive73

and lengthy. And let’s say the life cycle of the board members is getting shorter and74

shorter. The short-term IT strategies are often derived from this, because you are75

not a member of the company’s executive board for thirty years, as you used to be,76

but rather we have a five-year cycle, and in the five years you have to achieve visible77

success.78

Int. Let’s get into the questionnaire now. And here’s my first question: How do you79

assess the increasing standardization and automation in IT?80

Res. As urgently needed and the right step.81

Int. Then we come to these application services. The interview has two blocks. The first82

is application services and then, in particular, this application system architecture83

related to the system landscape, and in the first block, the first question is: The84

architecture proposes the reuse of configuration models between different application85

services provided for customers. Does this reuse increase overall efficiency?86

Res. Yes.87

Int. All operational tasks are recorded in configuration models. Expenses incurred can88

be directly allocated to these models. Is this helpful in determining the profitability89

of products?90

Res. Yes.91

Int. Application services are compiled from configuration models. The development of92

these models entails costs that can be attributed to the models. This makes it easy93

to determine the costs for an application system landscape before engineering. Is94

this determinability helpful?95

184 An Information System Architecture for ASLPs

Res. Yes.96

Int. Can you imagine application services that cannot be implemented with architecture?97

Res. I don’t know of any.98

Int. Service levels are used in the architecture to signal to the helpdesk which response99

times have been agreed or to quantify the agreed service availability. Is it sufficient100

looking at the current standard practice?101

Res. No, not enough, but it is the first step.102

Int. What would be the second step?103

Res. Depends on the business. For example, if you are dealing with system checks, the104

service level alone is not decisive. Compliance would be a measurement criterion;105

customer satisfaction would be a measurement criterion. So a pure SLA view would106

be too technical.107

Int. Two types of payroll accounting are addressed: pay-per-use and fixed price regardless108

of volume. Are these types of settlement sufficient?109

Res. Post-billing and pre-billing are the words used by us. Instant billing is actually110

becoming more and more popular. If you are dealing with American providers,111

there is the possibility of instant charging if you want to. The trend towards instant112

billing. This is actually a mixture of both models. Pay-per-use is always traditionally113

at the end of the month. Post-billing would basically be a basic fee.114

Int. Exactly, that would just be the two extremes that can be mapped with architecture.115

Res. Right, one talks more and more about subscriptions and then about usage. These116

are such common terms which are becoming more and more important. Zurora is117

also active in this area. That’s such an American provider of billing platforms that118

basically does what you do, but it’s very strong in the modern world, but they have119

very good metrics that are also available in subscriptions. For your market analysis.120

Int. In principle, two types of services are distinguished: Engineer-to-order and build-to-121

order. Are these two types sufficient?122

Res. Yes, these are both extremes. There are still interim solutions.123

Int. What would interim solutions be?124

Res. For example, that you say that in terms of complexity, I can do this with an operator,125

with a developer, i. e. only a part of it. After all, these are the gradations. The126

business is always about time-to-market and of course the higher the automation127

level, the better it is. When the departments can work for themselves. At the128

moment we proceed as follows, if this procedure has to be done x times, then the129

whole thing is transferred as a function for the department so that in the future it130

can be carried out without any dependency on IT. We basically have four to five131

different levels that you will go through until it makes economic sense to automate132

this. Well, there are gradations. Something like buying apps from a provider and133

Johannes Hintsch, M. Sc. 185

integrating them.134

Int. Well, that could be realized in the engineer-to-order process. So buying and integra-135

ting would be especially important?136

Res. Exactly, very important. You just mentioned the CMS. You used to build it yourself.137

Today, you buy this on the market and integrate it. Or quite typically in the138

environment of ERP systems, is a tax engine for tax calculations. There are five139

to six in the world; they’re very good. You can easily integrate them into large ERP140

systems.141

Int. Is the automated provision and operation of application services as described practi-142

cable and meaningful?143

Res. Yes. And necessary.144

Int. Okay, then we come to the information system architecture. The application system145

architecture of the information system provides an ERP system as the central leading146

system. Here, the application services are not only held as sales products but are147

represented in their complete structure. Does this complete storage make sense?148

Res. Not in my opinion. Because separation of concerns speak against it. So there must149

be an adjustment of the systems. But not a single point of truth in the ERP system.150

Int. Does this mean that the structure information does not have to be in the ERP151

system?152

Res. It doesn’t have to originate there. They can be stored in it and should also be153

stored there. But the origin and the change would not have to take place in the154

ERP system.155

Int. So you could imagine, for example, that a developer somehow adjusts his configu-156

ration in a version management system and that it is then compared with the IT157

service management system. Ok, but having this structural information in the ERP158

system would make sense.159

Res. Yes, alone for control. Controlling functions and checking functions are very im-160

portant. If you have stored the information in too many distributed locations, the161

internal control system escapes you.162

Int. What about modeling landscapes [with the ASL Modeller]?163

Res. Here the [ASL Modeler] could also draw information from different sources. You164

would just go forward with mergers and acquisitions, and then you would buy a165

system, which the other daughters would like to have. You wouldn’t be able to do166

that if you maintained everything in a central system. This can, of course, have an167

influence on your IT system structure. If you have too many bottlenecks in terms168

of development resources, you can shut down the entire corporation.169

Int. Is this especially true for your company or for ASLPs?170

Res. Well, the fintechs are doing the same thing now. You’re losing this time-to-market171

186 An Information System Architecture for ASLPs

thing. You have to develop a system like this evenly, and if a partner doesn’t go172

along with it. Then you have your old system, your new system and you have to173

keep it in sync. Something like Docker helps a lot because you can maintain the174

old environment for the partner who doesn’t move with you and suggest that the175

system is still running in an old environment, but it’s actually embedded in the new176

environment.177

Int. And classic ASLPs?178

Res. So, Zuora is basically something like that, but they can only run in the cloud.179

On-premise doesn’t work for them. There are also providers that can be hosted in180

their own data center. However, the respective data center operators must be very181

mature.182

Int. When terminating application services, the customer can be provided with copies183

of the IaaS instances. Is this service sufficient upon termination of the contract or184

would it have to be extended?185

Res. How is it provided?186

Int. As a hard disk copy.187

Res. No, we have had better experiences if one party has the source code deposited with188

a lawyer. If the supplier files for bankruptcy or closes the doors?189

Int. Yes, simply when the customer decides to switch to another provider.190

Res. In this case, we have had very good experiences with the fact that we get a kind of191

hit bundle. This means the deployed artifact plus the source code, so that in case of192

doubt if the business relationship is no longer valid, we can continue to work on the193

code ourselves. Including the code developed by the provider.194

Int. And the data?195

Res. 90% of the data is hosted on-premise. In other words, the data is already in our196

computer center and not at the partner’s site. That’s why the data would be available197

anyway. If your partner becomes insolvent, you want to ensure the continuity of your198

business. And you can only do that if you get the source code and deployable artifacts199

on a regular basis so that you can step in if necessary.200

Int. You want to have the configuration models, for example?201

Res. Yes, and providers are also willing to get involved. I don’t know about SAP, but202

suppliers like Zuora are all ready to do so.203

Int. The concept requires the entire infrastructure layer of the IT stack to be provided204

by IaaS software. Can this requirement be met?205

Res. Yes.206

Int. The application systems of the information architecture essentially comprise three207

types of application systems: Enterprise Management, IT Service Management, and208

Johannes Hintsch, M. Sc. 187

IT Service Production Systems. Security & Audit, Systems Engineering, and Mo-209

nitoring & Analysis Systems are other systems that are not in the focus. Does this210

selection correspond to the most critical systems of ASLP?211

Res. Yes.212

Int. And then there are two general questions: Would you be an ASLP and would you213

have the means to implement the information system architecture?214

Res. Yes, parts of it. Not completely. For me, the ERP system would not necessarily be215

the master for everything. The functions would be made up of individual systems,216

i. e. more modules, more in the direction of microservices.217

Int. Does the proposed information system architecture increase the quality and efficiency218

of creating application system landscapes?219

Res. Yes, absolutely.220

C.6.2 Interview 2

Presentation is started and then is paused at slide 2.1

Res. Processes are not standardized?2

Int. Yes, also processes. But we will see this in the following. I define a production3

process that involves several phases.4

Presentation is continued and finished.5

Int. We would now have the opportunity to clarify some further questions.6

Res. I have to recapitulate what you told me. It is about this: There is a service provider7

somewhere who wants to make systems available to some customers so that they can8

do their work on these systems. That is the basic requirement. Did I understand9

that correctly? Usually, you start and say: what do you want? We’ll virtualize10

it. Aha, you need this and that, this size, of computing sizes, of RAM2 sizes of11

whatever. And then an appropriate virtual system is put together, and then there12

are price lists, or not and then some prizes are played at dice. Here’s what you’ve13

done. You have created an ERP system, in this case, an SAP system, where I can14

enter what I would like to use. This system is based on materials and configuration15

options. Well, that goes so far with old-school. I would say. I enter this, and the16

service is automatically selected, which position do I need for it, the price is selected,17

and it is automatically and, that I have not understood yet, in the technology [data18

center] this system environment is made available because it does not exist before19

that.20

Int. Exactly.21

Res. Uh-huh, that means they have an interface from their configuration system to the22

data center. There’s physics [computing equipment] there. So this is virtualized, but23

2Random-access memory (RAM)

188 An Information System Architecture for ASLPs

at the end of the day, physics is what accommodates virtualization. But then you24

have a configuration tool where you can use this configuration, which you have just25

put together via the ERP system, where it is then made available to the customer.26

Int. Exactly. There are different characteristics. On the one hand, this standardized27

case where I offer very standardized services, e. g. also via a webshop, to the28

customer configurable. Or very individual solutions where you sit together with the29

customer or the customer can draw something by himself to create more individual30

solutions. And the entire process, this creation process is also mapped in the ERP31

system, including project management, in order to cover the costs of developing32

such configuration models, because this is the only way necessary to provide such a33

service if you already have the application software. So, for example, if you buy SAP34

software, you only need the corresponding configuration models. These are created.35

They automate the normal operation of these applications.36

Res. But this is only the case if they provide the virtual server, the operating system, i.37

e. the middleware. The application itself is not yet. Cause they don’t even know38

what’s on it.39

Int. That’s what I implied with [Covering the IT stack with configuration models]. The40

software configuration models can be arbitrarily complex. Of course, you can easily41

install packages, for example. For example, an OpenERP system can be installed.42

But you can of course also use the interfaces from SAP ERP via RFCs3, via BAPIs4
43

with which you can also possibly start any eCATTs5 with which you can also start the44

application, of course only to a certain standardized degree, which you have already45

defined in advance. So only what you have previously defined in the configuration46

models can be done in the systems. But one could also imagine, for example, that47

these configuration models for SAP ERP take on certain customizing tasks in the48

application.49

Res. But then, of course, they have to know that. And they must already have SAP50

ERP installed. I don’t know of any case where we in our data center when we get51

new procedures, where we can automate that sort of thing. Because each procedure52

is different from the other. Well provided we offer SAP as an ERP system and the53

customer can configure it himself. You’re right; we have the software. Some steps54

can be automated. But if I don’t know what the customer wants to run on these55

machines, then I can’t automate anything.56

Int. That’s right. If you first have to determine what the customer wants, and then if57

necessary also carry out an in-house development. Then, of course, it is not possible58

to automate this beforehand. Of course, this is only possible if you roll out the59

application service or parts of it to many customers. If, for example, you offer many60

different SAP ERP landscapes, which are similar to each other between customers,61

3Remote functional call (RFC)
4Business application programming interface (BAPI)
5Extended computer aided test tool (eCATT)

Johannes Hintsch, M. Sc. 189

but you provide many landscapes and of course also offer consulting services. But62

for me, the focus is now really on standardized system provisioning and operation.63

Res. With us, this is already automated. Parameters are passed, and then the virtual64

machine is configured. But we have no connection to any ERP system. We don’t65

have a billing from there either. It’s all running parallel.66

Int. I will start the interview now if you don’t have any more questions. The starting67

question is: How do you assess the increasing standardization and automation in68

IT?69

Res. Open answer? How do I rate this? It will increase or become more important. And70

it will become extremely important because of demographics and shrinking human71

resources.72

Int. Are you nostalgic?73

Res. Well, you have to see the reasons why. You don’t do it that way because you like to do74

it, but there are reasons for it. First of all, you have to cut costs because everything75

is becoming more complex and expensive. Automation is one way of keeping costs76

down. On the other hand, there’s something lacking in qualified personnel.77

Int. I would then go into the questions now. That’s three blocks of questions. Firstly,78

about the application services that can be provided, the information system architec-79

ture and two final questions. The first question of the first block would be now: The80

architecture suggests the reuse of configuration models between different application81

services provided to customers. Does this reuse increase overall efficiency? This is82

only about the general ASLP case, not your company in particular.83

Res. Yes.84

Int. All operational tasks are recorded in configuration models. Expenses incurred can85

be directly allocated to these models. Is this helpful for determining the profitability86

of products, i. e. application services?87

Res. Yes.88

Int. Application services are compiled from configuration models. The development of89

these models entails costs that can be attributed to the models. This makes it easy90

to determine the costs for an application system landscape before engineering. Is91

this determinability helpful?92

Res. Yes.93

Int. Can you imagine application services that cannot be implemented with architecture?94

We have seen these three example services. Do you also have services that you would95

not be able to implement?96

Res. It applies to software that is not preconfigured. That needs to be freshly installed.97

Int. Service levels are used in the architecture to signal to the helpdesk which response98

times have been agreed or to quantify the agreed service availability. Is it sufficient99

190 An Information System Architecture for ASLPs

to look at the current standard practice?100

Res. Of course, I have the User Help Desk in SLAs. As far as reaction time is concerned.101

Possibly also concerning the solution time. But the SLAs also show how much102

memory I use and how quickly I have a recovery. Whether I have 99.8% availability103

and such things. This has nothing to do with the User Help Desk itself.104

Int. Well, you would like to see more criteria.105

Res. So availability is absolutely important.106

Int. The agreed service availability with the customer, we have it with us. And then107

these reaction times, if any errors occur. How fast the service desk has to react.108

Res. The recovery time is also partly important.109

Int. Two types of payroll accounting are addressed: pay-per-use and fixed price regardless110

of volume. Are these types of settlement sufficient?111

Res. There are only these two. I don’t know a third possibility.112

Int. In principle, two types of services are distinguished: Engineer-to-order and build-to-113

order. Are these two types sufficient?114

Res. There is no other way.115

Int. There would be some possibilities in between.116

Res. Yes, of course. It always depends on the customer, with upper and lower limit. But117

from the principle, there are only these two possibilities. Either it is individual, or118

it is just standardized where it is clear how much effort has been calculated.119

Int. Is the automated provision and operation of application services as described practi-120

cable and meaningful?121

Res. Yes, it is.122

Int. Then we come to the application system architecture. The first question is: the123

application system architecture of the information system provides an ERP system124

as the central leading system. Here, the application services are not only held as125

sales products but are represented in their complete structure. Does this complete126

storage make sense?127

Res. Yes.128

Int. When terminating application services, the customer can be provided with copies129

of the IaaS instances. Is this service sufficient upon termination of the contract or130

would it have to be extended?131

Res. In my opinion, it is not sufficient because he cannot read it. It’s no use to him. This132

has to be presented differently so that he can read the information in a formatted133

way.134

Johannes Hintsch, M. Sc. 191

Int. Ok, so it would have to be provided in CSV6 dumps, for example.135

Res. Yes, or old-school, microfiche or CDs7 that work with index. As far as I’m concerned,136

if I have a booking list, then I can call up a booking list without having only the data.137

If I have an ERP, then I have to have all the data that has to be kept, I have to have138

it and be able to reproduce it. In the accounting department, I must have a list of139

bookings: Accounts receivable, accounts payable, open items and everything I have140

to keep for at least ten years. And some documents. It is quite possible that I have141

an archiving system or stored my invoices in the ERP system. In the future, when I142

operate with e-invoice, I will have XML files in the background anyway. These must143

also be archived and must be readable. And I don’t just need a file with bits and144

bytes stored as they are. I just have to make it readable with an application.145

Int. Of course, one could imagine that the customer would then start this image and146

extract the data himself.147

Res. Yes, that works in theory. But there is no economic solution to this, I know that,148

too. But that’s a problem for me. If I were a customer, I would pretend to need149

that and that kind of information, and I want it to be readable. If I no longer wish150

to operate the service.151

Int. The concept requires the entire infrastructure layer of the IT stack to be provided152

by IaaS software. Can this requirement be met?153

Res. I can’t answer this question.154

Int. The application systems of the information architecture essentially comprise three155

types of application systems: Enterprise Management, IT Service Management, and156

IT Service Production Systems. Security & Audit, Systems Engineering, and Mo-157

nitoring & Analysis Systems are other systems that are not in the focus. Does this158

selection correspond to the most critical systems of ASLP?159

Res. Yes.160

Int. Ok, and now in general: If you were an ASLP and would have the appropriate means,161

would you implement the information system architecture?162

Res. Yes. For very specific procedures. Our company doesn’t have that. I can’t say163

anything. Well, but such a generator, especially if it is also linked to an ERP164

system, where the order is then automatically generated. That’d be good. I know165

that our people in the datacenter do the calculation how expensive such a service,166

or only the provision of a virtual server, what this actually costs. They’d be happy167

to have a generator like that. Because they are also poking around in the fog and168

looking here and there and considering where they get the cost allocations. Because169

there are many departments and groups involved. This starts with the fact that170

the space rent must be there, that the frames must be there, that the climate is171

6Comma-separated values (CSV)
7Compact disc (CD)

192 An Information System Architecture for ASLPs

provided, that the chassis is provided. Where the physical servers end up.172

Int. Does the proposed information system architecture increase the quality and efficiency173

of creating application system landscapes?174

Res. Yes. If it is standardized, yes.175

C.6.3 Interview 3

Presentation is started and finished.1

Int. How do you assess the increasing standardization and automation in IT?2

Res. Well, first of all... I like automation and standardization. That makes sense, too.3

They are in principle the means to stay on top of increasing demands and complexity.4

This is the second side of the coin. On the one hand, I have a lot more requirements5

with regard to what IT should do. There are always new things coming out, big6

topics like blockchain or Industry 4.0, whatever. Requirements for flexibility, agility7

or availability also arise from major social trends... In other words, from all criteria8

that can be applied in this way. So digitization is permeating life more and more.9

And in order to be able to make this tangible at all or to make it reproducible in10

some way, one always tries to automate and standardize. These are the shovels of11

IT to keep everything under control. I can’t do without it. And it is in principle12

the daily struggle with the more. It’s about keeping up. If I don’t have standards13

and do everything individually, then this goes beyond the possibilities of the human14

mind and resources in any company or organization. Those who don’t manage to15

automate that will either become incredibly expensive, or they won’t be able to do16

what they are asked to do. And these are the two consequences if I can’t keep up17

with standardization and automation. That’s the point. This can also be seen in18

many examples. This is not only a technological issue but also an organizational19

one. This is diverse and not easy to do in IT organizations, but if you can’t do that,20

you can’t meet the requirements, or it’s going to be incredibly expensive.21

Int. Okay, that was the opening question. Then we now come to the application services.22

The first question is: the architecture suggests reusing configuration models between23

different application services provided to customers. Does this reuse increase overall24

efficiency?25

Res. The reuse of configuration models. If the configurations are designed or flexible in26

terms of deployment so that they can be adapted to the various scenarios, then, of27

course, this is possible. It’s just a question of how far this is given.28

Int. So depending on how versatile the configuration models are.29

Res. Basically, yes.30

Int. All operational tasks are recorded in configuration models. Expenses incurred can31

be directly allocated to these models. Is this helpful in determining the profitability32

of products?33

Johannes Hintsch, M. Sc. 193

Res. Sure, that sounds logical to me. Profitability is how much I put in, how much I get34

out. And that is in principle a grasping of the investment. So what initial effort I35

have to create the model and then how much does it cost me to improve the model,36

increase the maturity level, optimize it in relation to how often I can use it and how37

often I benefit from it.38

Int. Are there any configuration models in your company that can be reused?39

Res. Yes, we have a configuration model, for example, in terms of deploying VMs from40

deployment scenarios. We have a deployment system where we can say template-41

based and parameterizable about a file, this is now an exclusive S4Hana system,42

that the configuration for the application server and for the database . . . no, not the43

database because it is not a VM. But everything that is standard in VM8 deployment44

for the different deployment scenarios or for the different applications we deliver, we45

have for example such configuration models.46

Int. Application services are compiled from configuration models. The development of47

these models entails costs that can be attributed to the models. This makes it easy48

to determine the costs for an application system landscape before engineering. Is49

this determinability helpful?50

Res. Sure. It would definitely be. Because we also have the problem that the scenarios are51

becoming more complex. Or the variety of application variants increases and then52

the question of pricing is always the question. And if this is modularly structured53

and I can take a pricing from existing configurations, then that is of course good.54

Int. Can you imagine application services that cannot be implemented with architecture?55

Res. Well, the more difficult it gets, the higher the specialized requirements are. At the56

end of the day, I have to invest quite a lot in such configuration models and, for57

example, the systems I need for them. So the production execution system and the58

information systems. So this is all the more profitable, the more standardization I59

can accommodate. And whether or not I can accommodate this is something that60

is usually decided not by me, but by any customer who has requirements. And61

then according to how scalable it is, so a customer has the requirement or have62

n customers the requirement. The fewer variants and the more scaling, the more63

profitable it becomes, of course. Of course, the more efficiency benefits I get from64

such a system.65

Int. Ok. Service levels are used in the architecture to signal to the help desk which66

response times have been agreed upon or to quantify the agreed service availability.67

Is it sufficient looking at the current standard practice?68

Res. No, these are the two most important ones. Availability and response time are69

the two most important service levels. But in practice, of course, there is much70

more. The question is whether this will lead to more individualization and less71

8Virtual machine (VM)

194 An Information System Architecture for ASLPs

standardization at service levels. There is response time behavior. SLAs will then72

certainly also be recourse situations. And corresponding recovery situations. How73

quickly and in which case the system must be available again. Not only response74

times, but also time to solution. There’s something like that. That is relative, it75

is very hard, very expensive because almost no one can guarantee that. There are76

many more, but these are the two most important ones. Yeah.77

Int. Ok, then the next question: Two types of payroll accounting are addressed: pay-per-78

use and fixed price regardless of volume. Are these types of settlement sufficient?79

Res. Well, I’ll say, that’s a matter of opinion as to whether that’s sufficient. That’s enough80

for my idea, but there are already plenty of examples of cloud service providers, so81

all you have to do is look at Amazon with their calculator, which integrates the82

wildest forms of incentive into such price models. There are many gradations, but83

in my opinion, this is sufficient to offer the two variants.84

Int. In principle, two types of services are distinguished: Engineer-to-order and build-to-85

order. Are these two types sufficient?86

Res. These are the two basic types. So either I have a fixed variance, which I can query87

standardized via such mass customization and then deliver automatically or I say88

ok there are special requirements. Or its requirements are not just as represented in89

zero and one; then I need exactly the such a process in which I have to discuss all90

configuration items. Of course, this is much more complex, and the question always91

consists of... I build up my own configurations from these results of the process and92

how complex it is. Will there ever be a second one that uses the same patterns93

again, or is it actually an individual process that then shuffles along standards. Of94

course, I have to be careful that in the Engineer-to-order process I have more new95

variance possibilities in the individual configuration models. The question is whether96

my automation can handle it, in the end, i. e. whether my Execution Order is still97

able to execute it just because I have introduced some new things or whether I need98

a new Execution Engine. That’s where the variance can blow up my entire system.99

A normal cloud provider does not allow this. He has a variance. No matter how big100

it may be. It may still be varied, but the catalog. But he just won’t let me define101

anything outside of the system.102

Int. Okay, then the last question in this block. Is the automated provision and operation103

of application services as described above practicable and meaningful?104

Res. Depends on who, of course.105

Int. For the ASLPs.106

Res. As I said, it makes more sense the more I automate things... For example, with107

desktop as a service, it’s such a model where I can well imagine... So I think the108

model makes sense if I can handle an absolute majority of my things through this109

build to order process. If I can set up the system in such a way that I can run 90%110

Johannes Hintsch, M. Sc. 195

+ x percent of my cases over this build to order process, i. e. just run it in a highly111

automated way, then this makes sense. However, if I as a landscape provider build112

the system and more than 50% are always involved in engineering processes, I think113

it is no longer practicable. Then it’s too much overhead. Of course, it also depends114

on the size of the company. Of course, it depends on the size and if this is completely115

different now.116

Int. So an idea is of course that the solution designer also checks during the engineering117

process in the catalog to see if there are already corresponding models so that only118

non-existent models need to be newly implemented.119

Res. Yes, but this, of course, presupposes a standardization of things. So a database can120

now be considered as a configuration on the higher level, but of course, it is already121

very complex. And whether my application, which should then use the application,122

does not have special requirements, e. g. with regard to the tablespaces, as far as123

I’m concerned. That’s another one. The more powerful these configurations are,124

the more expert knowledge and know-how I need in these configurations. It’s going125

to be expensive. If you look at the automated cloud service providers that already126

exist. If you look at web hosts, for example. So since ten years, there are such127

packages where I have a Wordpress or where I have a MySQL or such things. Many128

providers are able to provide such a set with a configuration with a corresponding129

user interface and access options depending on what packages I buy. The next level130

up is that I have some kind of web content system on MySQL, so I can use it131

more easily, where I don’t have anything to do with MySQL. These are then always132

standards. Exactly this case. That it is highly scalable, that there are not only133

10 users, but also thousands of users who use it. I can put a lot of know-how into134

it, that MySQL works everywhere or is configured in packages. And then it’s just135

that there is hardly anything over the complexity of such web server applications.136

Well, it doesn’t really go beyond that. Even with more complex database systems, it137

ends. I don’t know, MongoDB or anything. But with complex application scenarios,138

however, this actually ends. You are relatively fast at Software as a service. Where139

they say ok, you’ve got no more to do with the whole thing downstairs, just use it.140

That’s that ladder upstairs.141

Int. Of course, it is also possible to provide an SAP system automatically.142

Res. Okay, but what does that mean? The question at SAP does not stop at the SAP143

system. I can do that, too. But it’s not that the SAP system is running. That’s144

just when the first half step starts. Of course, I can look at an SAP system like145

a web application server and say ok; I’ll start it up for you. An empty system or146

because of me it’s an IDES9 and do what you want, but that’s not real life. All147

we’re talking about is sandbox systems. Exclusively from trying or playing around.148

I can’t get a transport out of there. What about licenses? Especially with such149

9Internet demonstration and evaluation system (IDES)

196 An Information System Architecture for ASLPs

complex industrial applications, someone tells me that I’ll provide you with the ad150

hoc solution, I’ll provide you with a game system where you start to learn. Which151

modules are used, what is the license, etc.?152

Int. Yes, good, but you can imagine that the modules will then be made available in a153

configurable way. The software configuration models can also be active at higher154

levels. For example, you can already carry out a lot of Customizing activities for155

BAPIs RFCs.156

Res. But it quickly becomes so individual. Nobody would automate that. That’s being157

asked twice. This is simply too individual for automation.158

Int. Okay, let’s get to the next block. The application system architecture of the infor-159

mation system provides an ERP system as the central leading system. Here, the160

application services are not only held as sales products but are represented in their161

complete structure. Does this complete storage make sense?162

Res. Yes, I can understand that this is how you do it. That also seems to make sense.163

I think, if this will stand up to real life, then the decision is made... So if I put164

the system like this on, then that means in a process... the question is always who165

builds it... is that the question? So if I have only sales and finance people at my166

ERP system, it’s too small for them, so they couldn’t live with it. All right, I’m167

assuming it’s automated. So some customer orders this. The question is, how does168

that work? So what’s the order? Who designed the order. So with Build-to-Order,169

there is a standard form. And from this, everything in the system is automatically170

turned together. Ok, at the moment when it comes to engineer-to-order I have171

someone who wants to put it together in the system. And there’s the question: is172

this service engineer or the architect sitting at the ERP system or is he sitting at173

another system? I can imagine that some of them are not at the ERP system, but174

that the ERP people really are the people who only aggregate on a higher level. So175

in principle, I also believe that if you save all of this, it makes it easier to analyze it, if176

I can, so to speak, show my capacity utilization, if I can also map the corresponding177

procurement processes. So it makes sense to me, too.178

Int. Ok. When terminating application services, the customer can be provided with179

copies of the IaaS instances. Is this service sufficient upon termination of the contract180

or would it have to be extended?181

Res. That goes even further then what is currently offered. So normally that’s how it is182

when I use a service. Be it VM-based or software based. The service is gone. It’s183

rare that I still have access to anything in the follow-up. You don’t really find that.184

But on the contrary, these service providers actually close, as I said before, whichever185

level, is actually always the responsibility of the customer and for that something186

secured or wants to reuse it, that he himself is responsible for downloading it. Be187

it that he’s doing a VM backup, be it that he’s getting things out of some APIs.188

So with software as a service, it is usually the case that APIs are available to make189

Johannes Hintsch, M. Sc. 197

backups or local backups. If there is. Perfect is when it doesn’t exist. Then there’s190

a vendor lock-in, and I’ll never get it out of there. So that’s more than usual. That’s191

unusual today. This is extra.192

Int. Ok, The concept requires the entire infrastructure layer of the IT stack to be provided193

by IaaS software. Can this requirement be met?194

Res. Yes.195

Int. The application systems of the information system architecture essentially comprise196

three types of application systems: Enterprise Management, IT Service Management,197

and IT Service Production Systems. Security & Audit, Systems Engineering, and198

Monitoring & Analysis Systems are other systems that are not in the focus. Does199

this selection correspond to the most critical systems of ASLP?200

Res. Yes, I wouldn’t think of much more than that now.201

Int. Okay, let’s get back to the general block. Would you be an ASLP and would you202

have the means to implement the information system architecture?203

Res. Yes, something like that would be introduced, yes.204

Int. Ok, something like that?205

Res. Well, I think. The triangle of the three systems. That’s logical, that’s the way it is.206

The question I think is, on the one hand, how do I integrate these systems with each207

other, because, for example, if I use Solution Manager as ITSM, then I have Hyper-V208

as a service production system, for example. So the three kinds of systems are there,209

and those are the ones I need. The distances between the systems are relatively210

long. And that is the question which one I consider to be the leading system for211

me. I think that’s a philosophical question. So if I see this from a commercial point212

of view, you always see the ERP system as the leading system. If I see this from213

an internal IT point of view, it’s probably more like the IT production system that214

is leading for me. So this is such a philosophy question which is important for me215

and where I start. When I compare this in our company, we have just introduced216

the ERP system. We have the service desk. There is no de-facto integration yet.217

And I’m telling you, this execution system is not one thing. It is not the execution,218

but the production system, which is what many systems are. Take Amazon, for219

example. They have exactly such systems. When an order comes in, the individual220

systems are activated. These are exactly the same systems as in your concept. The221

question is - and this is always the point, I design it from top to bottom or from222

bottom to top. The goal is to have a desktop as a service, with the variants of what223

I have for a Windows version, etc. and then I start thinking about it and build it up.224

Or is there always a service-connected first and then we consider how to grow and225

get a structure. But in principle, such a network is needed. But it is probably true226

that each of these landscape service providers has a different character or a different227

focus. I think you’ll find a lot of opinions there.228

198 An Information System Architecture for ASLPs

Int. Does the proposed information system architecture increase the quality and efficiency229

of creating application system landscapes?230

Res. Yes, if I do this, then I am more standardized and generally have higher documenta-231

tion... and traceability is always such a point. Especially when I have implemented232

ITSM and the processes that make everything comprehensible, which is just such a233

quality criterion. Or make appropriate audits possible, or release processes enable234

such a thing for changes.235

Johannes Hintsch, M. Sc. 199

Bibliography

Adam, M. T. P., Gimpel, H., Maedche, A., and Riedl, R. (2017). Design blueprint for

stress-sensitive adaptive enterprise systems. Business & Information Systems Engineer-

ing, 59(4):277–291. (Cited on page 103.)

Ahmad, S., Schroeder, R. G., and Mallick, D. N. (2010). The relationship among modula-

rity, functional coordination, and mass customization: Implications for competitivenes.

European Journal of Innovation Management, 13(1):46–61. (Cited on pages 4, 57,

and 78.)

Akkermans, H. and Van der Horst, H. (2002). Managing IT infrastructure standardisation

in the networked manufacturing firm. International Journal of Production Economics,

75(1):213–228. (Cited on page 1.)

Alt, R., Auth, G., and Kögler, C. (2017). Innovationsorientiertes IT-Management – Eine

Fallstudie zur DevOps-Umsetzung bei T-Systems MMS. HMD – Praxis der Wirt-

schaftsinformatik, 54(2):216–229. (Cited on pages 30, 31, 32, 44, 53, 54, and 57.)

Alter, S. (2011). Metamodel for service design and service innovation: Integrating service

activities, service systems, and value constellations. In Galletta, D. F. and Liang, T.-

P. (eds.), Proceedings of the 32nd International Conference on Information Systems,

Shanghai, China, pages 1–20. (Cited on pages 27, 35, and 44.)

Andenmatten, M. (2017). IT4ITTM – das agile Betriebskonzept der IT der Zukunft. HMD

– Praxis der Wirtschaftsinformatik, 54(2):261–274. (Cited on pages 17, 18, and 20.)

Andersen-Gott, M., Ghinea, G., and Bygstad, B. (2012). Why do commercial companies

contribute to open source software? International Journal of Information Management,

32(2):106–117. (Cited on pages 1, 15, 32, and 44.)

Anderson, E., Lam, L.-l., Eschinger, C., Cournoyer, S., Correia, J. M., Wurster, L. F.,

Contu, R., Biscotti, F., Liu, V. K., Eid, T., Pang, C., Swinehart, H. H., Yeates, M.,

Petri, G., and Bell, W. (2013). Forecast overview: Public cloud services, worldwide,

2011-2016, 4q12 update. Technical Report G00247462, Gartner, Inc. (Cited on pages 3

and 113.)

Anderson, P. (1994). Towards a high-level machine configuration system. In Proceedings

of the 8th Large Installation System Administration Conference, Berkeley, CA, USA,

pages 19–26. (Cited on pages 14 and 39.)

200 An Information System Architecture for ASLPs

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013). Feature-oriented software product

lines. Springer, Heidelberg et al. (Cited on pages 38 and 39.)

Arcangeli, J.-P., Boujbel, R., and Leriche, S. (2015). Automatic deployment of distributed

software systems: Definitions and state of the art. Journal of Systems and Software,

103(1):198–218. (Cited on page 38.)

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,

Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2010). A view of cloud computing.

Communications of the ACM, 53(4):50–58. (Cited on pages 21, 35, and 85.)

Ballestrero, S., Batraneanu, S. M., Brasolin, F., Contescu, C., Girolamo, A. D., Lee, C. J.,

Astigarraga, M. E. P., Scannicchio, D. A., Twomey, M. S., and Zaytsev, A. (2014).

Design and performance of the virtualization platform for offline computing on the

ATLAS TDAQ farm. Journal of Physics: Conference Series, 513(3):1–5. (Cited on

page 39.)

Bandara, W., Furtmueller, E., Gorbacheva, E., Miskon, S., and Beekhuyzen, J. (2015).

Achieving rigor in literature reviews: Insights from qualitative data analysis and tool-

support. Communications of the Association for Information Systems, 37(1):154–204.

(Cited on page 10.)

Baun, C., Kunze, M., Nimis, J., and Tai, S. (2011). Cloud computing: Web-basierte

dynamische IT-services. Springer, Berlin and Heidelberg. (Cited on pages 16 and 21.)

Beck, K. (2002). Test-driven development: By example. Addison-Wesley, Boston. (Cited

on pages 30 and 34.)

Becker, J., Poeppelbuss, J., Venker, D., and Schwarze, L. (2011). Industrialisierung von

IT-Dienstleistungen: Anwendung industrieller Konzepte und deren Auswirkungen aus

Sicht von IT-Dienstleistern. In Bernstein, A. and Schwalbe, G. (eds.), Tagungsband der

10. Internationale Tagung Wirtschaftsinformatik, Zurich, Switzerland, pages 345–354.

(Cited on pages 2, 15, 20, 21, 43, and 56.)

Becker, J. and Schütte, R. (2004). Handelsinformationssysteme. Redline Wirtschaft,

Frankfurt am Main. (Cited on pages 24 and 43.)

Beimborn, D., Joachim, N., and Weitzel, T. (2012). Do service-oriented IT architectures

facilitate business process outsourcing? Zeitschrift für Betriebswirtschaft, 82(4):77–

108. (Cited on pages 2 and 35.)

Bell, S. C. and Orzen, M. A. (2010). Lean IT: Enabling and sustaining your lean trans-

formation. Taylor & Francis Group, New York. (Cited on page 2.)

Berger, T. G. (2005). Konzeption und Management von Service-Level-Agreements für IT-

Johannes Hintsch, M. Sc. 201

Dienstleistungen. PhD thesis, Technische Universität Darmstadt. (Cited on page 69.)

Bergeron, B. (2002). Essentials of shared services. Wiley, Hoboken, NJ, USA. (Cited on

pages 13 and 21.)

Bernstein, D. (2014a). Cloud Foundry aims to become the OpenStack of PaaS. IEEE

Cloud Computing, 1(2):57–60. (Cited on page 63.)

Bernstein, D. (2014b). Containers and cloud: From LXC to Docker to Kubernetes. IEEE

Cloud Computing, 1(3):81–84. (Cited on pages 4, 35, 36, 42, 47, 60, and 62.)

Betz, C. T. (2011). Architecture & patterns for IT. Morgan Kaufmann, Waltham, MA,

USA. (Cited on pages 2, 3, 18, 19, 53, and 154.)

Beyer, B., Jones, C., Petoff, J., and Murphy, N. (2016). Site reliability engineering: How

Google runs production systems. O’Reilly Media, Beijing et al. (Cited on pages 32, 33,

36, 37, 44, 57, 58, and 88.)

Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F. (2014). TOSCA: portable auto-

mated deployment and management of cloud applications. In Bouguettaya, A., Sheng,

Q. Z., and Daniel, F. (eds.), Advanced Web Services, pages 527–549. Springer, New

York. (Cited on pages 42, 47, and 63.)

BMC, Inc. (2017). Remedy AR system API and integration interfaces overview (C, Java,

.NET, web services, email, Ruby, Jython, VB, direct SQL). URL https://communities.

bmc.com/docs/DOC17512. Last accessed: March 15, 2017. (Cited on page 20.)

Boehm, B. (1988). A spiral model of software development and enhancement. Computer,

21(5):61–72. (Cited on pages 29, 30, and 82.)

Böhm, M., Koleva, G., Leimeister, S., Riedl, C., and Krcmar, H. (2010). Towards a generic

value network for cloud computing. In Altmann, J. and Rana, O. F. (eds.), Proceedings

of the International Workshop on Grid Economics and Business Models: Economics of

Grids, Clouds, Systems, and Services, Ischia, Italy, pages 129–140. (Cited on page 16.)

Böhmann, T., Junginger, M., and Krcmar, H. (2003). Modular service architectures: a

concept and method for engineering IT services. In Sprague, R. H. (ed.), Proceedings

of the 36th Annual Hawaii International Conference on System Sciences, Big Island, HI,

USA, pages 1–10. (Cited on page 27.)

Bordeleau, F. (2014). Model-based engineering: A new era based on papyrus and open

source tooling. In Bordelau, F., Dingel, J., Gerard, S., and Voss, S. (eds.), Proceedings

of the 1st Workshop on Open Source Software for Model Driven Engineering, Valencia,

Spain, pages 2–8. (Cited on page 87.)

https://communities.bmc.com/docs/DOC17512
https://communities.bmc.com/docs/DOC17512

202 An Information System Architecture for ASLPs

Bosse, S., Splieth, M., and Turowski, K. (2016). Multi-objective optimization of IT service

availability and costs. Reliability Engineering & System Safety, 147(1):142–155. (Cited

on page 58.)

Botta-Genoulaz, V. and Millet, P. (2006). An investigation into the use of ERP systems

in the service sector. International Journal of Production Economics, 99(1):202–221.

(Cited on pages 3, 26, 27, and 44.)

Botta-Genoulaz, V., Millet, P.-A., and Grabot, B. (2005). A survey on the recent research

literature on ERP systems. Computers in Industry, 56(6):510–522. (Cited on pages 23

and 24.)

Brandon, C. (2016). 6 problems with container technology. URL https://storageos.

com/6-problems-with-container-technology-in-the-enterprise/. Last accessed: Octo-

ber 16, 2017. (Cited on page 62.)

Breiter, G. and Behrendt, M. (2009). Life cycle and characteristics of services in the world

of cloud computing. IBM Journal of Research and Development, 53(4):3:1–3:8. (Cited

on page 81.)

Brenner, M., Schaaf, T., and Scherer, A. (2009). Towards an information model for ITIL

and ISO/IEC 20000 processes. In Raz, D., Schulzrinne, H., and Kim, Y.-T. (eds.),

Proceedings of the 11th IFIP/IEEE International Symposium on Integrated Network

Management, Long Island, NY, USA, pages 113–116. (Cited on pages 17, 19, and 44.)

Brooks, F. P. (1995). The mythical man-month. Addison-Wesley, Boston et al. (Cited on

page 134.)

Bumgardner, V. C. (2016). OpenStack in action. Manning Publications, Shelter Island,

NY, USA. (Cited on pages 60 and 73.)

Cannon, D. (2011a). ITIL R© service operation. The Stationery Office, Norwich, UK. (Cited

on pages 50 and 90.)

Cannon, D. (2011b). ITIL R© service strategy. The Stationery Office, Norwich, UK. (Cited

on pages 14, 15, 17, 56, 68, 70, and 83.)

Cardoso, J., Bostrom, R. P., and Sheth, A. (2004). Workflow management systems and

ERP systems: Differences, commonalities, and applications. Information Technology

and Management, 5(3):319–338. (Cited on pages 34 and 145.)

Chang, M., He, J., and Castro-Leon, E. (2006). Service-orientation in the computing

infrastructure. In Chi, C.-H., Bastani, F., and Xue, X. (eds.), Proceedings of the

2nd IEEE International Symposium on Service-Oriented System Engineering, Shanghai,

China, pages 27–33. (Cited on page 4.)

https://storageos.com/6-problems-with-container-technology-in-the-enterprise/
https://storageos.com/6-problems-with-container-technology-in-the-enterprise/

Johannes Hintsch, M. Sc. 203

Charland, A. and Leroux, B. (2011). Mobile application development: web vs. native.

Communications of the ACM, 54(5):49–53. (Cited on page 1.)

Chen, I. J. and Popovich, K. (2003). Understanding customer relationship manage-

ment (CRM) people, process and technology. Business Process Management Journal,

9(5):672–688. (Cited on page 23.)

Chen, R., Kraemer, K. L., and Sharma, P. (2009). Google: The world’s first information

utility? Business & Information Systems Engineering, 1(1):53–61. (Cited on pages 32

and 44.)

Chlebusch, A. (2016). Microservice Architekturen – eine systematische Literaturanalyse.

Bachelor thesis, Otto-von-Guericke-Universität Magdeburg. (Cited on page 33.)

Conger, S. (2010). From the special issue editor: Servitizing IT. Information Systems

Management, 27(2):100–102. (Cited on page 1.)

Currie, W. L. and Seltsikas, P. (2001). Exploring the supply-side of IT outsourcing:

Evaluating the emerging role of application service providers. European Journal of

Information Systems, 10(3):123–134. (Cited on pages 3, 16, 17, 43, and 59.)

Cusumano, M. (2010). Cloud computing and saas as new computing platforms. Commu-

nications of the ACM, 53(4):27–29. (Cited on page 1.)

Dargahi, J. and Najarian, S. (2004). Human tactile perception as a standard for artificial

tactile sensing – a review. The International Journal of Medical Robotics and Computer

Assisted Surgery, 1(1):23–35. (Cited on page 1.)

Davenport, T. H. (2000). Mission critical: Realizing the promise of enterprise systems.

Harvard Business School Press, Boston. (Cited on pages 23 and 154.)

Debois, P. (2011). DevOps: A software revolution in the making? Cutter IT Journal,

24(8):3–5. (Cited on page 32.)

Deboosere, L., Vankeirsbilck, B., Simoens, P., Turck, F. D., Dhoedt, B., and Demeester,

P. (2012). Cloud-based desktop services for thin clients. IEEE Internet Computing,

16(6):60–67. (Cited on page 111.)

Delaet, T., Joosen, W., and Van Brabant, B. (2010). A survey of system configuration

tools. In van Drunen, R. (ed.), Proceedings of the 24th Large Installation System

Administration Conference, San Jose, CA, USA, pages 1–14. (Cited on pages ix, 4, 14,

38, 39, 40, 45, 72, 130, 134, and 140.)

Dernbecher, S., Beck, R., and Toenker, M. (2013). Cloudifying desktops – a taxonomy for

desktop virtualization. In Shim, J., Hwang, Y., and Petter, S. (eds.), Proceedings of

204 An Information System Architecture for ASLPs

the 19th Americas Conference on Information Systems, Chicago, IL, USA, pages 1–9.

(Cited on page 111.)

Desai, N., Bradshaw, R., and Lueninghoener, C. (2006). Directing change using bcfg2. In

LeFebvre, W. (ed.), Proceedings of the 20th Large Installation System Administration

Conference, Washington, DC, USA, pages 215–220. (Cited on page 97.)

Dijkstra, E. (1968). The structure of the ”THE” multiprogramming system. Communi-

cations of the ACM, 11(5):341–346. (Cited on page 34.)

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., and Vakali, A. (2009). Cloud

computing: Distributed internet computing for IT and scientific research. IEEE Internet

computing, 13(5):10–13. (Cited on page 89.)

Disterer, G. (2009). ISO 20000 for IT. Business & Information Systems Engineering,

1(6):463–467. (Cited on pages 13 and 17.)

Docker, Inc. (2017). Compatibility matrix. URL https://success.docker.com/Policies/

Compatibility Matrix. Last accessed: October 16, 2017. (Cited on page 62.)

Dudek, S., Uebernickel, F., and Brenner, W. (2012). Beherrschung von Vielfalt bei IT-

dienstleistungen: Adaption und Einsatz der Variantenkonfiguration. In Böhmann, T.,

Knackstedt, R., Leimeister, J. M., Nüttgens, M., and Thomas, O. (eds.), Tagungs-

band der Teilkonferenz im Rahmen der Multi-Konferenz Wirtschaftsinformatik: Service

Engineering & Management, Norderstedt, pages 27–40. (Cited on pages 26, 28, 29,

and 47.)

Dyb̊a, T. and Dingsøyr, T. (2009). What do we know about agile software development?

IEEE Software, 26(5):6–9. (Cited on page 18.)

Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. (2016). DevOps. IEEE Software,

33(3):94–100. (Cited on pages ix, 18, 31, 32, 38, 44, and 120.)

Ebert, N. (2009). Produktionsplanung und -steuerung bei IT-Dienstleistern. PhD thesis,

Universität St. Gallen. (Cited on pages 26, 28, 29, 47, 77, 103, and 144.)

Ebert, N., Uebernickel, F., Hochstein, A., and Brenner, W. (2007). A service model for

the development of management systems for IT-enabled services. In Hoxmeier, J. A.

and Hayne, S. (eds.), Proceedings of the 13th Americas Conference on Information

Systems, Keystone, CO, USA, pages 455–462. (Cited on pages 26, 27, 44, and 68.)

Eden, R., Sedera, D., and Tan, F. B. (2012). Archival analysis of enterprise resource plan-

ning systems: The current state and future directions. In Huang, M.-H., Piccoli, G., and

Sambamurthy, V. (eds.), Proceedings of the International Conference on Information

Systems, Orlando, FL, USA, pages 1–19. (Cited on page 24.)

https://success.docker.com/Policies/Compatibility_Matrix
https://success.docker.com/Policies/Compatibility_Matrix

Johannes Hintsch, M. Sc. 205

Egyedi, T. (2001). Strategies for de facto compatibility: Standardization, proprietary

and open source approaches to Java. Knowledge, Technology & Policy, 14(2):113–128.

(Cited on page 1.)

Eilam, T., Kalantar, M. H., Konstantinou, A. V., Pacifici, G., Pershing, J., and Agrawal,

A. (2006). Managing the configuration complexity of distributed applications in internet

data centers. IEEE Communications Magazine, 44(3):166–177. (Cited on pages 3

and 4.)

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of

Management Review, 14(4):532–550. (Cited on pages 8 and 103.)

Eisenhardt, K. M. and Graebner, M. E. (2007). Theory building from cases: Opportunities

and challenges. Academy of Management Journal, 50(1):25–32. (Cited on page 106.)

Erbes, J., Nezhad, H. R. M., and Graupner, S. (2012). The future of enterprise IT in the

cloud. Computer, 45(5):66–72. (Cited on pages 2 and 13.)

Esteves, J. and Bohórquez, V. W. (2007). An updated ERP systems annotated bibli-

ography: 2001-2005. Communications of the Association for Information Systems,

19(1):386–446. (Cited on page 24.)

Esteves, J. and Pastor, J. (2001). Enterprise resource planning systems research: an

annotated bibliography. Communications of the Association for Information Systems,

7(1):1–52. (Cited on page 24.)

European Commission (2005). The new SME definition: User guide and model declara-

tion. Publications Office of the European Union, Luxembourg. (Cited on pages 9, 54,

and 158.)

European Commission (2015). Broadband coverage in Europe 2015 – mapping progress

towards the coverage objectives of the Digital Agenda. Publications Office of the Euro-

pean Union, Luxembourg. (Cited on page 36.)

Evans, A. and Kent, S. (1999). Core meta-modelling semantics of UML: The pUML

approach. In France, R. and Rumpe, B. (eds.), Proceedings of the 2nd International

Conference on the Unified Modeling Language: Beyond the Standard, Fort Collins, CO,

USA, pages 140–155. (Cited on page 113.)

Everett, G. and McLeod, R. (2007). Software testing: Testing across the entire software

development life cycle. Wiley, Hoboken, NJ, USA. (Cited on page 88.)

Färber, F., Cha, S. K., Primsch, J., Bornhövd, C., Sigg, S., and Lehner, W. (2011). SAP

HANA database: data management for modern business applications. ACM SIGMOD

Record, 40(4):45–51. (Cited on page 3.)

206 An Information System Architecture for ASLPs

Fehling, C., Leymann, F., Retter, R., Schupeck, W., and Arbitter, P. (2014). Cloud

computing patterns: Fundamentals to design, build, and manage cloud applications.

Springer, Wien et al. (Cited on pages 36 and 37.)

Feitelson, D. G., Frachtenberg, E., and Beck, K. L. (2013). Development and deployment

at Facebook. IEEE Internet Computing, 17(4):8–17. (Cited on page 30.)

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2014). An updated perfor-

mance comparison of virtual machines and linux containers. Technical Report RC25482

(AUS1407-001), July, IBM Research Division. (Cited on page 62.)

Fettke, P. (2016). Client-server-architektur. In Gronau, N., Becker, J., Kliewer, N.,

Leimeister, M., and Overhage, S. (eds.), Enzyklopädie der Wirtschaftsinformatik –

Online Lexikon. GITO Verlag, http://www.enzyklopaedie-der-wirtschaftsinformatik.de.

(Cited on page 34.)

Fettke, P. and vom Brocke, J. (2016). Referenzmodell. In Gronau, N., Becker, J., Kliewer,

N., Leimeister, M., and Overhage, S. (eds.), Enzyklopädie der Wirtschaftsinformatik –

Online Lexikon. GITO Verlag, http://www.enzyklopaedie-der-wirtschaftsinformatik.de.

(Cited on pages 24 and 43.)

Fink, A. (2014). Monolithisches IT-system. In Gronau, N., Becker, J., Kliewer, N.,

Leimeister, M., and Overhage, S. (eds.), Enzyklopädie der Wirtschaftsinformatik –

Online Lexikon. GITO Verlag, http://www.enzyklopaedie-der-wirtschaftsinformatik.de.

(Cited on pages 33 and 34.)

Finney, S. and Corbett, M. (2007). ERP implementation: a compilation and analysis of

critical success factors. Business Process Management Journal, 13(3):329–347. (Cited

on page 103.)

Fischer, J., Knepper, R., Standish, M., Stewart, C. A., Alvord, R., Lifka, D., Hallock,

B., and Hazlewood, V. (2014). Methods for creating XSEDE compatible clusters. In

Lathrop, S. (ed.), Proceedings of the Annual Conference on Extreme Science and

Engineering Discovery Environment, pages 1–5. (Cited on page 38.)

Fischer, T. A., Hirschheim, R., and George, B. (2012). Governance in outsourcing re-

lationships - the role of information technologies. In Huang, M.-H., Piccoli, G., and

Sambamurthy, V. (eds.), Proceedings of the International Conference on Information

Systems, Orlando, FL, USA, pages 1–9. (Cited on page 18.)

Fitzgerald, B. (2006). The transformation of open source software. MIS Quarterly,

30(3):587–598. (Cited on page 1.)

Fletcher, C., Williams, D. P., and Wurster, L. F. (2016). Magic quadrant for application

release automation. Technical Report G00302195, Gartner, Inc. (Cited on page 72.)

http://www.enzyklopaedie-der-wirtschaftsinformatik.de
http://www.enzyklopaedie-der-wirtschaftsinformatik.de
http://www.enzyklopaedie-der-wirtschaftsinformatik.de

Johannes Hintsch, M. Sc. 207

Fowler, M. P. (2003). Patterns of enterprise application architecture. Addison-Wesley,

Boston. (Cited on page 66.)

Frank, U. (2014). Multi-perspective enterprise modeling: foundational concepts, prospects

and future research challenges. Software & Systems Modeling, 13(3):941–962. (Cited

on page 27.)

Frank, U., Heise, D., Kattenstroth, H., Ferguson, D. F., Hadar, E., and Waschke, M. G.

(2009). ITML: A domain-specific modeling language for supporting business driven IT

management. In Rossi, M., Sprinkle, J., Gray, J., and Tolvanen, J.-P. (eds.), Procee-

dings of the 9th OOPSLA workshop on domain-specific modeling, Orlando, USA, pages

1–8. (Cited on pages 27 and 40.)

Frechette, S. (2011). Model based enterprise for manufacturing. In Duffie, N. A. (ed.),

Proceedings of the 44th CIRP International Conference on Manufacturing Systems,

Madison, WI, USA, pages 1–6. (Cited on page 2.)

Fuchs, L. and Pernul, G. (2013). Qualitätssicherung im Identity- und Access Management.

HMD – Praxis der Wirtschaftsinformatik, 50(1):88–97. (Cited on pages 95 and 97.)

Fuchs, L., Pernul, G., and Sandhu, R. (2011). Roles in information security – a survey

and classification of the research area. Computers & Security, 30(8):748–769. (Cited

on page 97.)

Gacek, C. and Arief, B. (2004). The many meanings of open source. IEEE Software,

21(1):34–40. (Cited on pages 32 and 44.)

Gartner (2017a). IT glossary: Enterprise applications. URL https://www.gartner.com/

it-glossary/enterprise-applications. Last accessed: March 9, 2017. (Cited on page 23.)

Gartner (2017b). IT glossary: ITSSM tools (IT service support management tools). URL

http://www.gartner.com/it-glossary. Last accessed: March 9, 2017. (Cited on page 19.)

Gartner (2017c). Newsroom: Gartner says a massive shift to hybrid infrastructure ser-

vices is underway. URL https://www.gartner.com/newsroom/id/3666917. Last acces-

sed: March 9, 2017. (Cited on page 3.)

Garud, R. and Kumaraswamy, A. (1993). Changing competitive dynamics in network

industries: An exploration of sun microsystems’ open systems strategy. Strategic Ma-

nagement Journal, 14(5):351–369. (Cited on page 1.)

Gholami, M. F., Daneshgar, F., Beydoun, G., and Rabhi, F. (2017). Challenges in migra-

ting legacy software systems to the cloud - an empirical study. Information Systems,

67(1):100–113. (Cited on page 62.)

https://www.gartner.com/it-glossary/enterprise-applications
https://www.gartner.com/it-glossary/enterprise-applications
http://www.gartner.com/it-glossary
https://www.gartner.com/newsroom/id/3666917

208 An Information System Architecture for ASLPs

Glohr, C., Kellermann, J., and Dörnemann, H. (2014). The IT factory: A vision of

standardization and automation. In Abolhassan, F. (ed.), The Road to a Modern

IT Factory: Industrialization – Automation – Optimization, pages 101–109. Springer-

Verlag, Berlin and Heidelberg. (Cited on pages 2, 41, and 47.)

Gmach, D., Rolia, J., Cherkasova, L., and Kemper, A. (2007). Workload analysis and

demand prediction of enterprise data center applications. In Breternitz, M. (ed.), Pro-

ceedings of the 10th International Symposium on Workload Characterization, Boston,

MA, USA, pages 171–180. (Cited on page 96.)

Goeken, M. and Alter, S. (2009). Towards conceptual metamodeling of IT governance

frameworks approach – use – benefits. In Sprague, R. H. (ed.), Proceedings of the

42nd Annual Hawaii International Conference on System Sciences, Big Island, HI, USA,

pages 1–10. (Cited on pages 17 and 44.)

Goettsch, N. and Tosse, T. (2013). Digitale produktentwicklung und fertigung: Von CAD

und CAM zu PLM. In Kief, H. B. and Roschiwal, H. A. (eds.), CNC-Handbuch 2013

/ 2014, pages 562–579. Hanser, Munich. (Cited on pages 24 and 58.)

Goldratt, E. M. (2004). THE GOAL: A process of ongoing improvement. The North River

Press, Great Barrington, MA, USA. (Cited on page 93.)

Gómez, J. C. M. (2012). Serviceorientierte architektur. In Gronau, N., Becker, J., Kliewer,

N., Leimeister, M., and Overhage, S. (eds.), Enzyklopädie der Wirtschaftsinformatik –

Online Lexikon. GITO Verlag, http://www.enzyklopaedie-der-wirtschaftsinformatik.de.

(Cited on page 34.)

Grant, R. M. (1996). Prospering in dynamically-competitive environments: Organizational

capability as knowledge integration. Organization Science, 7(4):375–387. (Cited on

page 2.)

Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3):611–

642. (Cited on page 10.)

Gronau, N. (2010). Enterprise Resource Planning – Architektur, Funktionen und Mana-

gement von ERP-Systemen. Oldenburg, Munich. (Cited on pages 24, 25, 43, 50, 75, 85,

95, 117, and 118.)

Grossniklaus, M. and Norrie, M. C. (2002). Information concepts for content management.

In Huang, B., Ling, T. W., Mohania, M., Ng, W. K., Wen, J.-R., and Gupta, S. K.

(eds.), Proceedings of the 3rd International Conference on Web Information Systems

Engineering (Workshops), Singapore, pages 150–159. (Cited on page 112.)

Guay, M., Pang, C., Hestermann, C., and Montgomery, N. (2015). Magic quadrant

for single-instance ERP for product-centric midmarket companies. Technical Report

http://www.enzyklopaedie-der-wirtschaftsinformatik.de

Johannes Hintsch, M. Sc. 209

G00272540, Gartner, Inc. (Cited on page 74.)

Gutenberg, E. (1983). Grundlagen der Betriebswirtschaftslehre: Die Produktion. Erster

Band. Springer-Verlag, Berlin et al. (Cited on page 1.)

Hall, R., Pauls, K., McCulloch, S., and Savage, D. (2011). OSGi in action: Creating

modular applications in Java. Manning, Stamford, CT, USA. (Cited on page 38.)

Hanappi, O., Hummer, W., and Dustdar, S. (2016). Asserting reliable convergence for

configuration management scripts. In Visser, E. (ed.), Proceedings of the 2016 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, pages 328–343. (Cited on pages 40, 41, 63, and 105.)

Harrison, A. and van Hoek, R. (2008). Logistics management and strategy: Competing

through the supply chain. Prentice Hall Financial Times, Harlow, UK. (Cited on

pages 2, 25, 43, and 151.)

Hendricks, E. C. and Hartmann, T. C. (1979). Evolution of a virtual machine subsystem.

IBM Systems Journal, 18(1):111–142. (Cited on page 23.)

Herden, S. (2013). Model-Driven-Configuration-Management: Ein modellgetriebener An-

satz für das Konfigurationsmanagement von IT-Systemlandschaften. Springer Vieweg,

Wiesbaden. (Cited on pages 40, 45, 58, and 88.)

Hernantes, J., Gallardo, G., and Serrano, N. (2015). IT infrastructure-monitoring tools.

IEEE Software, 32(4):88–93. (Cited on page 95.)

Hess, T., Loos, P., Buxmann, P., Erek, K., Frank, U., Gallmann, J., Gersch, M., Zarnekow,

R., and Zencke, P. (2012). ICT providers: A relevant topic for business and information

systems engineering? Business & Information Systems Engineering, 5(6):367–373.

(Cited on pages 13 and 153.)

Hevner, A., March, S., Park, J., and Ram, S. (2004). Design science in information systems

research. MIS Quarterly, 28(1):75–105. (Cited on pages ix, 1, 6, 7, 54, 103, 104, 105,

106, and 139.)

Hintsch, J. (2013). ERP for the IT service industry: A structured literature review. In

Shim, J., Hwang, Y., and Petter, S. (eds.), Proceedings of the 19th Americas Conference

on Information Systems, Chicago, IL, USA, pages 1–9. (Cited on pages 5, 10, 25, 26,

47, and 106.)

Hintsch, J., Görling, C., and Turowski, K. (2015a). Modularization of software as a service

products: A case study of the configuration management tool Puppet. In Hinkelmann,

K. and Thönssen, B. (eds.), Proceedings of the 2015 International Conference on En-

terprise Systems, Basel, Switzerland, pages 184–191. (Cited on page 4.)

210 An Information System Architecture for ASLPs

Hintsch, J., Görling, C., and Turowski, K. (2016a). A review of the literature on configura-

tion management tools. In Andrade, A. D. and Seymour, L. (eds.), Proceedings of the

International Conference on Information Resources Management: Digital Emancipation

in a Networked Society, Cape Town, South Africa, pages 1–12. (Cited on pages 6, 11,

38, 39, 45, 72, and 106.)

Hintsch, J., Khan, A., Siegling, A., and Turowski, K. (2017). Application software in cloud-

ready data centers: A survey. In Marx Gómez, J., Mora, M., Raisinghani, M. S., Nebel,

W., and O’Connor, R. V. (eds.), Engineering and Management of Data Centers: An

IT Service Management Approach, pages 261–288. Springer International Publishing,

Cham. (Cited on pages 6 and 94.)

Hintsch, J., Kramer, F., Jamous, N., and Turowski, K. (2016b). The application system

landscapes of IT service providers: A multi case study. In Li, G. and Yu, Y. (eds.),

Proceedings of the 4th International Conference on Enterprise Systems, Melbourne,

Australia, pages 122–131. (Cited on pages 6, 9, 18, 20, 48, 49, 50, 51, 106, 151, 154,

and 159.)

Hintsch, J., Kramer, F., and Turowski, K. (2015b). ERP systems’ usage in the german

IT service industry: An exploratory multi-case study. In Hallé, S., Mayer, W., Ghose,

A. K., and Grossmann, G. (eds.), Proceedings of the 19th International Enterprise

Distributed Object Computing Conference, Adelaide, Australia, pages 169–178. (Cited

on pages 6, 9, 18, 19, 53, 106, and 159.)

Hintsch, J., Kramer, F., and Turowski, K. (2018). An information system architecture for

build- and engineer-to-order production of application services. Information Systems

and e-Business Management, online. (Cited on pages 6 and 159.)

Hintsch, J., Schrödl, H., Scheruhn, H.-J., and Turowski, K. (2015c). Industrialization in

cloud computing with enterprise systems: Order-to-cash automation for SaaS products.

In Thomas, O. and Teuteberg, F. (eds.), Tagungsband der 12. Internationale Tagung

Wirtschaftsinformatik, Münster, Germany, pages 61–75. (Cited on pages 3, 6, and 118.)

Hintsch, J. and Turowski, K. (2013). Towards implementing IT service management in an

ERP for the IT service industry. In Grabis, J., Kirikova, M., Zdravkovic, J., and Stirna,

J. (eds.), Proceedings of the 6th IFIP WG 8.1 Working Conference on the Practice of

Enterprise Modeling, Short Papers, Riga, Latvia, pages 83–94. (Cited on pages 6, 11,

17, 44, and 106.)

Hochstein, A., Ebert, N., Übernickel, F., and Brenner, W. (2007). IT-Industrialisierung:

Was ist das? Computerwoche, 15(3):5. (Cited on pages 2 and 20.)

Hochstein, A. and Uebernickel, F. (2006). Operations management and IS: Using the

SCOR-model to source make and deliver IS services. In Rodŕıguez-Abitia, G. and B.,

Johannes Hintsch, M. Sc. 211

I. A. (eds.), Proceedings of the 12th Americas Conference on Information Systems,

Acapulco, México, pages 32–39. (Cited on pages 15, 82, and 110.)

Hochstein, A., Zarnekow, R., and Brenner, W. (2005). ITIL as common practice reference

model for IT service management: formal assessment and implications for practice. In

Cheung, W. K. and Hsu, J. (eds.), Proceedings of the International Conference on

e-Technology, e-Commerce and e-Service, Hong Kong, China, pages 704–710. (Cited on

page 17.)

Hoffmann, B. (2010). Hostvirtualisierung – Vergleich der Konzepte und Produkte. In

Helmbrecht, U., Teege, G., and Stelte, B. (eds.), Virtualisierung: Techniken und si-

cherheitsorientierte Anwendungen – Bericht 2010-04, pages 7–32. Universität der Bun-

deswehr, Munich. (Cited on pages 35 and 62.)

Hofmann, G. R. (2009). Interview with Bettina Uhlich on ’IT controlling’. Business &

Information Systems Engineering, 1(3):266–268. (Cited on page 2.)

Hori, K., Yoshihara, K., and Horiuchi, H. (2007). Customer equipment configuration

manager for managed network service providers. In Rodosek, G. D. and Aschenbrenner,

E. (eds.), Proceedings of the 10th IFIP/IEEE International Symposium on Integrated

Network Management, Munich, Germany, pages 516–526. (Cited on page 39.)

Hsu, P.-F., Ray, S., and Li-Hsieh, Y.-Y. (2014). Examining cloud computing adoption

intention, pricing mechanism, and deployment model. International Journal of Infor-

mation Management, 34(4):474 – 488. (Cited on pages 21, 22, 43, and 149.)

Humble, J. and Farley, D. (2010). Continuous delivery: Reliable software releases through

build, test, and deployment automation. Addison-Wesley, Boston. (Cited on pages 18,

30, 58, 88, and 120.)

Hunnebeck, L. (2011). ITIL R© service design. The Stationery Office, Norwich, UK. (Cited

on page 69.)

ISO/IEC (2011). 20000: Information technology – service management – part 1: Service

management system requirements. Second edition. (Cited on page 2.)

ISO/IEC/IEEE (2011). 42010: Systems and software engineering – architecture descrip-

tion. First edition. (Cited on pages 8, 33, 51, 107, 108, 136, and 151.)

ISO/IEC/IEEE (2015). 15288: Systems and software engineering – system life cycle

processes. First edition. (Cited on page 22.)

Iveroth, E., Westelius, A., Petri, C.-J., Olve, N.-G., Cöster, M., and Nilsson, F. (2013).

How to differentiate by price: Proposal for a five-dimensional model. European Mana-

gement Journal, 31(2):109–123. (Cited on pages 13, 21, 22, 56, 74, 89, and 110.)

212 An Information System Architecture for ASLPs

Jennings, B. and Stadler, R. (2014). Resource management in clouds: Survey and research

challenges. Journal of Network and Systems Management, 23(3):567–619. (Cited on

page 28.)

Jørgensen, M., Dyb̊a, T., and Kitchenham, B. (2005). Teaching evidence-based software

engineering to university students. In Lanubile, F. and Seaman, C. (eds.), Proceedings

of the 11th IEEE International Software Metrics Symposium, Como, Italy, pages 24–31.

(Cited on page 10.)

Kaczmarek-Heß, M. and de Kinderen, S. (2017). A multilevel model of IT platforms

for the needs of enterprise IT landscape analyses. Business & Information Systems

Engineering, 59(5):315–329. (Cited on page 40.)

Kandogan, E., Haber, E., Barrett, R., Cypher, A., Maglio, P., and Zhao, H. (2005).

A1: End-user programming for web-based system administration. In Baudisch, P.,

Czerwinski, M., and Olsen, D. (eds.), Proceedings of the 18th Annual ACM Symposium

on User Interface Software and Technology, New York, NY, USA, pages 211–220. (Cited

on page 40.)

Kappelman, L., McLean, E., Johnson, V., and Gerhart, N. (2014). The 2014 SIM IT key

issues and trends study. MIS Quarterly Executive, 13(4):237–263. (Cited on pages 16,

43, and 59.)

Kastensson, Å. (2014). Developing lightweight concepts in the automotive industry: Ta-

king on the environmental challenge with the S̊aNätt project. Journal of Cleaner

Production, 66(1):337–346. (Cited on page 3.)

Keller, A. and Ludwig, H. (2003). The WSLA framework: Specifying and monitoring

service level agreements for web services. Journal of Network and Systems Management,

11(1):57–81. (Cited on pages 69 and 70.)

Kern, T., Kreijger, J., and Willcocks, L. (2002). Exploring ASP as sourcing strategy:

Theoretical perspectives, propositions for practice. The Journal of Strategic Information

Systems, 11(2):153–177. (Cited on page 9.)

Kim, G., Behr, K., and Spafford, K. (2013). The Phoenix project: A novel about IT,

DevOps, and helping your business win. IT Revolution Press, Portland. (Cited on

page 2.)

Kirschnick, J., Calero, J. M. A., Wilcock, L., and Edwards, N. (2010). Toward an ar-

chitecture for the automated provisioning of cloud services. IEEE Communications

Magazine, 48(12):124–131. (Cited on pages 41, 47, and 103.)

Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software

engineering: Version 2.3. Technical Report EBSE-2007-01, July, Keele University and

Johannes Hintsch, M. Sc. 213

University of Durham. (Cited on page 10.)

Klaus, H., Rosemann, M., and Gable, G. (2000). What is ERP? Information Systems

Frontiers, 2(2):141–162. (Cited on pages 2, 9, 23, 33, and 112.)

Koukis, V., Venetsanopoulos, C., and Koziris, N. (2013). õkeanos: Building a cloud,

cluster by cluster. IEEE Internet Computing, 17(3):67–71. (Cited on page 37.)

Kræmmergaard, P. and Rose, J. (2002). Managerial competences for ERP journeys. In-

formation Systems Frontiers, 4(2):199–211. (Cited on page 112.)

Kratzke, N. and Quint, P.-C. (2017). Understanding cloud-native applications after 10

years of cloud computing - a systematic mapping study. Journal of Systems and

Software, 126(1):1–16. (Cited on pages 36, 37, and 62.)

Kromrey, H. and Strübing, J. (2009). Empirische Sozialforschung: Modelle und Methoden

der standardisierten Datenerhebung und Datenauswertung. UTB: Lucius & Lucius,

Stuttgart. (Cited on page 139.)

Kvale, S. and Flick, U. (2007). Doing interviews. SAGE Publications, Los Angeles. (Cited

on page 9.)

Labes, S., Hanner, N., and Zarnekow, R. (2017). Successful business model types of cloud

providers. Business & Information Systems Engineering, 59(4):223–233. (Cited on

pages 16 and 43.)

Lacity, M. C., Khan, S., Yan, A., and Willcocks, L. P. (2010). A review of the IT out-

sourcing empirical literature and future research directions. Journal of Information

Technology, 25(4):395–433. (Cited on pages 13, 16, 21, 43, and 59.)

Lainhart, J. W., Oliver, D. J., Andrews, P. G., Antonsson, E. J., Babb, S. A., De Haes, S.,

Harrison, P., Heschl, J., Johnson, R. D., Pols, E. H., Poole, V. R., and Rafeq, A. (2012).

Cobit R© 5: A business framework for the governance and management of enterprise IT.

ISACA, Rolling Meadows, IL, USA. (Cited on pages 2, 17, and 94.)

Lange, L. (2007). Why ITIL rules. United Business Media, London. (Cited on page 18.)

Laplante, P. A., Zhang, J., and Voas, J. (2008). What’s in a name? distinguishing between

SaaS and SOA. IT Professional, 10(3):46–50. (Cited on page 34.)

Laudon, K. C. and Laudon, J. P. (2005). Management information systems: Managing the

digital firm. Prentice Hall, Upper Saddle River, NJ, USA. (Cited on pages 22 and 23.)

Lebrecht, A. (1991). Die anwendung des CIM-konzeptes auf den DV-betrieb, dargestellt

am beispiel der produktionsplanung und -steuerung. In Schwichtenberg, G. (ed.), Ta-

gungsband des 9. GI-Fachgespräch über Rechenzentren: Organisation und Betrieb von

214 An Information System Architecture for ASLPs

Informationssystemen, Dortmund, Germany, pages 167–189. (Cited on pages 28 and 47.)

Lenhard, J. (2016). Portability of process-aware and service-oriented software. phdthesis,

Universität Bamberg. (Cited on page 42.)

Lewis, J. and Fowler, M. (2014). Microservices: a definition of this new architec-

tural term. URL https://martinfowler.com/articles/microservices.html. Last acces-

sed: March 6, 2018. (Cited on pages 36, 37, 44, 54, and 62.)

Leymann, F., Fehling, C., Wagner, S., and Wettinger, J. (2016). Native cloud applications:

Why virtual machines, images and containers miss the point! In Cardoso, J., Ferguson,

D., Méndez Muñoz, V., and Helfert, M. (eds.), Proceedings of the 6th International

Conference on Cloud Computing and Service Science, Rome, Italy, pages 7–15. (Cited

on pages 36 and 62.)

Liang, H., Xue, Y., Boulton, W. R., and Byrd, T. A. (2004). Why western vendors don’t

dominate China’s ERP market. Communications of the ACM, 47(7):69–72. (Cited on

page 2.)

Lloyd, V. (2011). ITIL R© continual service improvement. The Stationery Office, Norwich,

UK. (Cited on pages 2, 3, 18, and 53.)

Löffler, M. and Reinshagen, F. (2014). From project to product orientation. In Abolhas-

san, F. (ed.), The Road to a Modern IT Factory: Industrialization – Automation –

Optimization, pages 43–48. Springer-Verlag, Berlin and Heidelberg. (Cited on page 37.)

Logsdon, S. (2015). ansible-roles. URL https://github.com/slogsdon/ansible-roles/blob/

master/wordpress/defaults/main.yml. Last accessed: October 6, 2017. (Cited on

page 72.)

Magherusan-Stanciu, C., Sebestyen-Pal, A., Cebuc, E., Sebestyen-Pal, G., and Dadarlat,

V. (2011). Grid system installation, management and monitoring application. In Dadar-

lat, V. T. and Mundani, R. P. (eds.), Proceedings of the 10th International Symposium

on Parallel and Distributed Computing, Cluj Napoca, Romania, pages 25–32. (Cited

on page 60.)

Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati, S., Yasukata, K., Raiciu,

C., and Huici, F. (2017). My VM is lighter (and safer) than your container. In Alvisi,

L. and Chen, P. (eds.), Proceedings of the 26th Symposium on Operating Systems

Principles, Shanghai, China, pages 218–233. (Cited on page 62.)

Mansfield-Devine, S. (2014). Not coping with change. Network Security, 2014(8):14–17.

(Cited on pages 15 and 20.)

Marrone, M., Gacenga, F., Cater-Steel, A., and Kolbe, L. M. (2014). IT service mana-

https://martinfowler.com/articles/microservices.html
https://github.com/slogsdon/ansible-roles/blob/master/wordpress/defaults/main.yml
https://github.com/slogsdon/ansible-roles/blob/master/wordpress/defaults/main.yml

Johannes Hintsch, M. Sc. 215

gement: A cross-national study of ITIL adoption. Communications of the Association

for Information Systems, 34(49):865–893. (Cited on pages 2, 13, 17, 18, 43, and 90.)

Mastelic, T., Garćıa, A. G., and Brandic, I. (2016). Towards uniform management of multi-

layered cloud services by applying model-driven development. Journal of Systems and

Software, 121(1):358–371. (Cited on pages 36, 41, 47, and 103.)

McIlroy, M. (1969). Mass produced software components. In Naur, P. and Randell, B.

(eds.), Proceedings of the NATO Science Commitee Conference on Software Engineer-

ing, Garmisch, Germany, pages 138–155. (Cited on page 34.)

Mell, P. and Grance, T. (2011). The NIST definition of cloud computing. Technical Report

800-145, National Institute of Standards and Technology. (Cited on pages 4, 16, 21, 22,

35, and 96.)

Menzel, M., Klems, M., Le, H. A., and Tai, S. (2013). A configuration crawler for virtual

appliances in compute clouds. In Campbell, R., Lei, H., and Markl, V. (eds.), Procee-

dings of the 2013 International Conference on Cloud Engineering, Redwood City, CA,

USA, pages 201–209. (Cited on page 40.)

Michel, R. (1998). IT services take center stage. Manufacturing Systems, 16(9):44–50.

(Cited on page 103.)

Mietzner, R., Leymann, F., and Unger, T. (2011). Horizontal and vertical combination

of multi-tenancy patterns in service-oriented applications. Enterprise Information Sy-

stems, 5(1):59–77. (Cited on page 81.)

Mobus, G. E. and Kalton, M. C. (2015). Systems engineering. In Mobus, G. E. and Kalton,

M. C. (eds.), Principles of Systems Science, pages 699–731. Springer, New York et al.

(Cited on page 94.)

Møller, C. (2005). ERP II: a conceptual framework for next-generation enterprise systems?

Journal of Enterprise Information Management, 18(4):483–497. (Cited on page 23.)

Momoh, A., Roy, R., and Shehab, E. (2010). Challenges in enterprise resource planning

implementation: State of the art. Business Process Management Journal, 16(4):537–

565. (Cited on pages 25, 43, 56, and 75.)

Naur, P. (1969). Programming by action clusters. BIT Numerical Mathematics, 9(3):250–

258. (Cited on pages 29 and 34.)

Nelson, L. E., Staten, J., and Williamson, K. (2014). State of cloud platform stan-

dards: Q1 2014 – OpenStack steps forward to become the new de facto model.

URL https://www.forrester.com/report/State+Of+Cloud+Platform+Standards+Q1+

%202014/-/E-RES112621. Last accessed: July 30, 2014. (Cited on pages 42 and 72.)

https://www.forrester.com/report/State+Of+Cloud+Platform+Standards+Q1+%202014/-/E-RES112621
https://www.forrester.com/report/State+Of+Cloud+Platform+Standards+Q1+%202014/-/E-RES112621

216 An Information System Architecture for ASLPs

New Relic, Inc. (2015). DevOps without measurement is a fail: How to

measure and track the 5 critical drivers of DevOps success. URL https:

//try.newrelic.com/rs/412-MZS-894/images/AWS New%20Relic Measuring%

20DevOps%20Success eBook 062217.pdf. Last accessed: March 6, 2018. (Cited

on pages 31, 48, and 53.)

Ng, F., Nag, S., ling Lam, L., Dharmasthira, Y., Eschinger, C., Anderson, R. P., Torn-

bohm, C., Roth, C., Tramacere, G., Blackmore, D., Wurster, L. F., Contu, R., Biscotti,

F., Pang, C., Singh, T., Swinehart, H. H., Montgomery, N., Dominy, M., Petri, G., Kan-

daswamy, R., Palanca, T., Hare, J., Woodward, A., and Corriveau, J. (2017). Forecast:

Public cloud services, worldwide, 2015-2021, 2017 update. Technical Report G00247462,

Gartner, Inc. (Cited on pages 22 and 43.)

Ngai, E., Law, C., and Wat, F. (2008). Examining the critical success factors in the

adoption of enterprise resource planning. Computers in Industry, 59(6):548–564. (Cited

on pages 25 and 43.)

Nielsen, T., Iversen, C., and Bonnet, P. (2011). Private cloud configuration with MetaCon-

fig. In Feig, E., Pu, C., and Goscinski, A. M. (eds.), Proceedings of the International

Conference on Cloud Computing, Washington, DC, USA, pages 508–515. (Cited on

page 40.)

OASIS (2015). TOSCA simple profile in YAML. Version 1.0 – public review draft 01.

(Cited on pages 41 and 47.)

Oestereich, B. and Scheithauer, A. (2012). Analyse und Design mit der UML 2.5: Objek-

torientierte Softwareentwicklung. Oldenbourg Wissenschaftsverlag, Munich. (Cited on

pages 67 and 123.)

OpenStack Foundation (2011). Hypervisor support matrix. URL https://wiki.openstack.

org/wiki/HypervisorSupportMatrix. Last accessed: June 15, 2017. (Cited on pages 60

and 75.)

OpenStack Foundation (2012). Heat: OpenStack orchestration. URL https://wiki.

openstack.org/wiki/Heat. Last accessed: June 15, 2017. (Cited on pages 42, 47, 62,

and 83.)

OpenStack Foundation (2015). Heat-translator. URL https://wiki.openstack.org/wiki/

Heat-Translator. Last accessed: February 15, 2018. (Cited on page 42.)

OpenStack Foundation (2017). Companies supporting the OpenStack Foundation. URL

https://www.openstack.org/foundation/companies/. Last accessed: March 7, 2017. (Ci-

ted on page 72.)

OpenStack Foundation (2018). Virtual machine image guide. URL https://docs.openstack.

https://try.newrelic.com/rs/412-MZS-894/images/AWS_New%20Relic_Measuring%20DevOps%20Success_eBook_062217.pdf
https://try.newrelic.com/rs/412-MZS-894/images/AWS_New%20Relic_Measuring%20DevOps%20Success_eBook_062217.pdf
https://try.newrelic.com/rs/412-MZS-894/images/AWS_New%20Relic_Measuring%20DevOps%20Success_eBook_062217.pdf
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat-Translator
https://wiki.openstack.org/wiki/Heat-Translator
https://www.openstack.org/foundation/companies/
https://docs.openstack.org/image-guide/obtain-images.html
https://docs.openstack.org/image-guide/obtain-images.html

Johannes Hintsch, M. Sc. 217

org/image-guide/obtain-images.html. Last accessed: January 31, 2018. (Cited on

page 72.)

Otto, B. and Schmidt, A. (2010). Enterprise master data architecture: Design decisions

and options. In Talburt, J. R., Koronios, A., and Su, Y. (eds.), Proceedings of the

15th International Conference on Information Quality, Little Rock, AR, USA, pages

147–159. (Cited on page 52.)

Owens, D. (2010). Securing elasticity in the cloud. Communications of the ACM, 53(6):46–

51. (Cited on pages 13, 21, 28, 37, and 96.)

Pahl, C. (2015). Containerization and the PaaS cloud. IEEE Cloud Computing, 2(3):24–

31. (Cited on pages 35, 36, and 113.)

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058. (Cited on page 34.)

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2008). A design

science research methodology for information systems research. Journal of Management

Information Systems, 24(3):45–77. (Cited on pages 6, 7, 11, and 106.)

Perez, S. (2014). Amazon WorkSpaces, Amazon’s cloud desktop service, launches to pu-

blic along with new sync client. URL http://tcrn.ch/2I32zMV. Last accessed: Novem-

ber 30, 2017. (Cited on page 111.)

Pilgram, U. and Vogedes, A. (2012). Ein Geschäftssystem für ICT-Dienstleister nach

industriellen Maßstäben. HMD – Praxis der Wirtschaftsinformatik, 49(5):103—112.

(Cited on pages 26, 29, and 47.)

Pink Elephant (2017). PinkVERIFYTM 2011 toolsets. URL https://www.pinkelephant.

com/en-us/PinkVERIFY/PinkVERIFYToolsets. Last accessed: March 9, 2017. (Cited

on pages 18, 20, and 90.)

Pinnow, A. (2009). Das Rechenzentrum als Produktionsstätte für IT-Dienstleistungen -

Kapazitätswirtschaft in virtualisierten Rechenzentren. PhD thesis, Otto-von-Guericke-

Universität Magdeburg. (Cited on pages 28 and 47.)

Pop, D., Neagul, M., and Petcu, D. (2014). On cloud deployment of digital preservation

environments. In Buchanan, G., Klein, M., Rauber, A., and Cunningham, S. J. (eds.),

Proceedings of the 14th IEEE/ACM Joint Conference on Digital Libraries, London,

UK, pages 443–444. (Cited on page 39.)

Porter, M. E. (1980). Competitive strategy: Techniques for analyzing industries and

competitors. The Free Press, New York. (Cited on page 52.)

https://docs.openstack.org/image-guide/obtain-images.html
https://docs.openstack.org/image-guide/obtain-images.html
http://tcrn.ch/2I32zMV
https://www.pinkelephant.com/en-us/PinkVERIFY/PinkVERIFYToolsets
https://www.pinkelephant.com/en-us/PinkVERIFY/PinkVERIFYToolsets

218 An Information System Architecture for ASLPs

Porter, M. E. (1985). Competitive advantage: Creating and sustaining superior perfor-

mance. The Free Press, New York. (Cited on pages 19, 66, and 81.)

Praeg, C.-P. and Spath, D. (2008). Perspectives of IT-Service Quality Management: A

Concept for Life Cycle Based Quality Management of IT-Services. In Cater-Steel, A.

(ed.), Information Technology Governance and Service Management: Frameworks and

Adaptations, pages 381–407. Information Science Reference, Hershey, NY, USA. (Cited

on page 81.)

Prahalad, C. K., Hamel, G., et al. (1990). The core competence of the corporation.

Harvard Business Review, 68(3):79–91. (Cited on page 2.)

Prat, N., Comyn-Wattiau, I., and Akoka, J. (2015). A taxonomy of evaluation methods for

information systems artifacts. Journal of Management Information Systems, 32(3):229–

267. (Cited on pages 105 and 107.)

Prodan, R. and Ostermann, S. (2009). A survey and taxonomy of infrastructure as a

service and web hosting cloud providers. In Lu, P. (ed.), Proceedings of the 10th

IEEE/ACM International Conference on Grid Computing, Banff, AB, Canada, pages

17–25. (Cited on page 3.)

Puppet, Inc. (2017). puppetlabs/mysql. URL https://forge.puppet.com/puppetlabs/

mysql. Last accessed: October 6, 2017. (Cited on page 72.)

Puppet, Inc. (2018). Module fundamentals. URL https://puppet.com/docs/puppet/4.8/

modules fundamentals.html#module-layout. Last accessed: March 6, 2018. (Cited on

page 173.)

Rance, S. (2011). ITIL R© service transition. The Stationery Office, Norwich, UK. (Cited

on pages 18, 20, 38, and 95.)

Rautenstrauch, C. and Schulze, T. (2003). Informatik für Wirtschaftswissenschaftler und

Wirtschaftsinformatiker. Springer, Berlin and Heidelberg. (Cited on pages 23 and 34.)

Richter, C. and Schaaf, T. (2011). A maturity model for tool landscapes of IT service provi-

ders. In Agoulmine, N., Bartolini, C., Pfeifer, T., and O’Sullivan, D. (eds.), Proceedings

of the 12th IFIP/IEEE International Symposium on Integrated Network Management,

Dublin, Ireland, pages 1050–1057. (Cited on pages 2 and 27.)

Riemer, K. and Ahlemann, F. (2001). Application service providing – erfahrungsbericht

aus sicht eines providers. In Buhl, H. U., Huther, A., and Reitwiesner, B. (eds.), Ta-

gungsband der 5. Internationale Tagung Wirtschaftsinformatik, Augsburg, Germany,

pages 743–756. (Cited on pages 3, 16, 17, 43, 57, and 59.)

Rimal, B. P., Jukan, A., Katsaros, D., and Goeleven, Y. (2011). Architectural require-

https://forge.puppet.com/puppetlabs/mysql
https://forge.puppet.com/puppetlabs/mysql
https://puppet.com/docs/puppet/4.8/modules_fundamentals.html#module-layout
https://puppet.com/docs/puppet/4.8/modules_fundamentals.html#module-layout

Johannes Hintsch, M. Sc. 219

ments for cloud computing systems: An enterprise cloud approach. Journal of Grid

Computing, 9(1):3–26. (Cited on page 81.)

Romero, D. and Vernadat, F. (2016). Enterprise information systems state of the art:

past, present and future trends. Computers in Industry, 79(1):3–13. (Cited on pages 2

and 34.)

Royce, W. W. (1970). Managing the development of large software systems. In Pro-

ceedings of the IEEE Western Electronic Show and Convention: Technical Papers, Los

Angeles, CA, USA, pages 328–338. (Cited on page 29.)

Ruscio, D. D. and Pelliccione, P. (2014). Simulating upgrades of complex systems: The

case of free and open source software. Information and Software Technology, 56(4):438–

462. (Cited on page 40.)

Saenz de Ugarte, B., Artiba, A., and Pellerin, R. (2009). Manufacturing execution system

– a literature review. Production Planning and Control, 20(6):525–539. (Cited on

pages 74 and 75.)

SaltStack, Inc. (2017). SALT.STATES.FILE. URL https://docs.saltstack.com/en/latest/

ref/states/all/salt.states.file.html. Last accessed: October 6, 2017. (Cited on page 72.)

SAP SE (2013). Maintaining characteristics for configuration. URL https://help.sap.com/

saphelp erp60 sp/helpdata/en/a1/e7ba53422bb54ce10000000a174cb4/frameset.htm.

Last accessed: June 15, 2017. (Cited on page 79.)

SAP SE (2014a). Building block configuration guide: Connectivity SAP ERP. SAP ERP

6.07, M11, October. (Cited on page 119.)

SAP SE (2014b). Building block configuration guide: Engineer-to-order (ETO)-project

assembly. EHP7 for SAP ERP 6.0, 240, February. (Cited on page 119.)

SAP SE (2015a). SAP benchmark glossary. URL http://global.sap.com/campaigns/

benchmark/bob glossary.epx$#$s. Last accessed: May 2, 2016. (Cited on page 119.)

SAP SE (2015b). The value of SAP Solution Manager 7.1! URL https://de.scribd.com/

document/293143515/SAP-Solution-Manager-7-1. Last accessed: June 19, 2017. (Cited

on page 20.)

SAP SE (2016). SAP documentation: ABAP workbench tools. URL https://help.sap.com/

saphelp nw73ehp1/helpdata/en/ef/d94b78ebf811d295b100a0c94260a5/frameset.htm.

Last accessed: October 9, 2017. (Cited on page 74.)

SAP SE (2017a). Installation of SAP systems with unattended mode. SAP Note 950619.

(Cited on page 123.)

https://docs.saltstack.com/en/latest/ref/states/all/salt.states.file.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.file.html
https://help.sap.com/saphelp_erp60_sp/helpdata/en/a1/e7ba53422bb54ce10000000a174cb4/frameset.htm
https://help.sap.com/saphelp_erp60_sp/helpdata/en/a1/e7ba53422bb54ce10000000a174cb4/frameset.htm
http://global.sap.com/campaigns/benchmark/bob_glossary.epx$#$s
http://global.sap.com/campaigns/benchmark/bob_glossary.epx$#$s
https://de.scribd.com/document/293143515/SAP-Solution-Manager-7-1
https://de.scribd.com/document/293143515/SAP-Solution-Manager-7-1
https://help.sap.com/saphelp_nw73ehp1/helpdata/en/ef/d94b78ebf811d295b100a0c94260a5/frameset.htm
https://help.sap.com/saphelp_nw73ehp1/helpdata/en/ef/d94b78ebf811d295b100a0c94260a5/frameset.htm

220 An Information System Architecture for ASLPs

SAP SE (2017b). SAP documentation: Creating returns. URL https://help.sap.com/

saphelp erp60 sp/helpdata/en/8f/65b65334e6b54ce10000000a174cb4/frameset.htm.

Last accessed: October 9, 2017. (Cited on page 80.)

SAP SE (2017c). SAP documentation: Quantity contract. URL https://help.sap.com/

saphelp erp60 sp/helpdata/en/4a/65b65334e6b54ce10000000a174cb4/frameset.htm.

Last accessed: October 10, 2017. (Cited on page 80.)

Scheer, A.-W. (1997). Wirtschafsinformatik: Referenzmodelle für industrielle Geschäfts-

prozesse. Springer-Verlag, Berlin and Heidelberg. (Cited on pages 2, 24, 43, 76, and 78.)

Schlichter, B. and Kraemmergaard, P. (2010). A comprehensive literature review of the

ERP research field over a decade. Journal of Enterprise Information Management,

23(4):486–520. (Cited on pages 13 and 24.)

Schneider, S. and Sunyaev, A. (2016). Determinant factors of cloud-sourcing decisions:

reflecting on the IT outsourcing literature in the era of cloud computing. Journal of

Information Technology, 31(1):1–31. (Cited on pages 16, 43, and 59.)

Schröder, K. and Pilgram, U. (2010). Industrialized IT - Idee und Realität. In Heinrich,

H., Johannsen, A., and Bohne, D. (eds.), Tagungsband zum 9. Berlin-Brandenburger

SAP-Forum der Fachhochschule Brandenburg: Business Software Trends in Ausbildung

und Praxis, Brandenburg an der Havel, Brandenburg, pages 73–96. (Cited on page 53.)

Schryen, G. (2015). Writing qualitative IS literature reviews: Guidelines for synthesis,

interpretation and guidance of research. Communications of the Association for Infor-

mation Systems, 37(1):286–325. (Cited on page 10.)

ServiceNow, Inc. (2015a). Finance service management. URL https://www.servicenow.

com/products/finance-service-management.html. Last accessed: November 24, 2015.

(Cited on page 20.)

ServiceNow, Inc. (2015b). Product documentation: List of available integrations. URL

http://bit.ly/2rNd2Tl. Last accessed: March 15, 2017. (Cited on page 20.)

Seuring, S. and Müller, M. (2008). From a literature review to a conceptual framework for

sustainable supply chain management. Journal of Cleaner Production, 16(15):1699–

1710. (Cited on pages 10 and 26.)

Sheikh, K. (2003). Manufacturing resource planning (MRP II): with introduction to ERP,

SCM and CRM. McGraw-Hill, New York. (Cited on page 76.)

Siedersleben, J. (2007). SOA revisited: Komponentenorientierung bei Systemlandschaften.

Wirtschaftsinformatik, 49(1):110–117. (Cited on page 34.)

https://help.sap.com/saphelp_erp60_sp/helpdata/en/8f/65b65334e6b54ce10000000a174cb4/frameset.htm
https://help.sap.com/saphelp_erp60_sp/helpdata/en/8f/65b65334e6b54ce10000000a174cb4/frameset.htm
https://help.sap.com/saphelp_erp60_sp/helpdata/en/4a/65b65334e6b54ce10000000a174cb4/frameset.htm
https://help.sap.com/saphelp_erp60_sp/helpdata/en/4a/65b65334e6b54ce10000000a174cb4/frameset.htm
https://www.servicenow.com/products/finance-service-management.html
https://www.servicenow.com/products/finance-service-management.html
http://bit.ly/2rNd2Tl

Johannes Hintsch, M. Sc. 221

Simon, A., Schoeman, P., and Sohal, A. S. (2010). Prioritised best practices in a ra-

tified consulting services maturity model for ERP consulting. Journal of Enterprise

Information Management, 23(1):100–124. (Cited on pages 50 and 74.)

Skene, J., Raimondi, F., and Emmerich, W. (2010). Service-level agreements for electro-

nic services. IEEE Transactions on Software Engineering, 36(2):288–304. (Cited on

pages 68, 69, and 70.)

Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and Peterson, L. (2007). Container-

based operating system virtualization: a scalable, high-performance alternative to hy-

pervisors. In Ferreira, P., Gross, T. R., and Veiga, L. (eds.), Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems, Lisbon, Portugal,

pages 275–287. (Cited on page 36.)

Song, T., Wang, J., Wu, J., Ma, R., Liang, A., Gu, T., and Qi, Z. (2017). FastDesk: A

remote desktop virtualization system for multi-tenant. Future Generation Computer

Systems, 81(1):478–491. (Cited on page 111.)

Sonnenberg, C. and vom Brocke, J. (2012). Evaluations in the science of the artificial

– reconsidering the build-evaluate pattern in design science research. In Peffers, K.,

Rothenberger, M., and Kuechler, B. (eds.), Proceedings of the 7th International Con-

ference of Design Science Research in Information Systems: Advances in Theory and

Practice, Las Vegas, NV, USA, pages 381–397. (Cited on pages xiii, 11, 103, 104, 106,

139, 151, and 154.)

Spinellis, D. (2005). Version control systems. IEEE Software, 22(5):108–109. (Cited on

page 73.)

Spinellis, D. (2012). Don’t install software by hand. IEEE Software, 29(4):86–87. (Cited

on pages 18, 30, 58, 72, 88, and 135.)

Sprecher der WKWI und GI-FB WI (2008). WI-Orientierungslisten. Wirtschaftsinfor-

matik, 50(2):155–163. (Cited on page 26.)

Spring, J. (2011a). Monitoring cloud computing by layer, part 1. IEEE Security &

Privacy, 9(2):66–68. (Cited on page 95.)

Spring, J. (2011b). Monitoring cloud computing by layer, part 2. IEEE Security &

Privacy, 9(3):52–55. (Cited on page 95.)

Staehr, L., Shanks, G., and Seddon, P. B. (2012). An explanatory framework for achie-

ving business benefits from ERP systems. Journal of the Association for Information

Systems, 13(6):424. (Cited on page 83.)

Stahlknecht, P. and Hasenkamp, U. (2005). Einführung in die Wirtschafsinformatik. Sprin-

222 An Information System Architecture for ASLPs

ger, Berlin et al. (Cited on pages 5, 22, 23, 34, and 69.)

Stallings, W. (2017). Overview of cloud computing. In Vacca, J. R. (ed.), Cloud Compu-

ting Security: Foundations and Challenges, pages 13–29. Taylor & Francis Group, Boca

Raton, FL, USA. (Cited on pages ix and 21.)

Stevenson, M., Hendry, L. C., and Kingsman, B. G. (2005). A review of production

planning and control: the applicability of key concepts to the make-to-order industry.

International Journal of Production Research, 43(5):869–898. (Cited on page 4.)

Supply Chain Council (2010). SCOR: Supply Chain Operations Reference model. Version

10.0. (Cited on page 83.)

Susarla, A., Barua, A., and Whinston, A. B. (2003). Understanding the service component

of application service provision: An empirical analysis of satisfaction with ASP services.

MIS Quarterly, 27(1):91–123. (Cited on page 3.)

Talligent (2016). 2016 state of OpenStack report. URL http://talligent.com/wp-content/

uploads/2016/03/2016-State-of-OpenStack-Report.pdf. Last accessed: March 7, 2017.

(Cited on page 72.)

Talwar, V., Milojicic, D., Wu, Q., Pu, C., Yan, W., and Jung, G. (2005). Approaches for

service deployment. IEEE Internet Computing, 9(2):70–80. (Cited on pages 14, 31, 40,

56, 57, 60, 63, 129, and 140.)

Tarhan, A. and Yilmaz, S. G. (2014). Systematic analyses and comparison of development

performance and product quality of incremental process and agile process. Information

and Software Technology, 56(5):477–494. (Cited on pages 30 and 58.)

Teubner, A. and Remfert, C. (2017). Giving IT services a theoretical backing. In Ya-

mamoto, S. (ed.), Proceedings of the 19th International Conference Human Interface

and the Management of Information: Information, Knowledge and Interaction Design,

Vancouver, BC, Canada, pages 448–468. (Cited on pages 13, 15, 27, and 57.)

The HFT Guy (2016). Docker in production: A history of failure. URL https:

//thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/. Last acces-

sed: October 16, 2017. (Cited on page 62.)

The Open Group (2017). The Open Group IT4ITTM reference architecture. Version 2.1.

(Cited on pages 2, 17, 19, and 45.)

Thomas, D. R. E. (1978). Strategy is different in service businesses. Harvard Business

Review, 56(7):158–165. (Cited on page 2.)

Turner, J. A., Bikson, T. K., Lyytinen, K., Mathiassen, L., and Orlikowski, W. (1991).

http://talligent.com/wp-content/uploads/2016/03/2016-State-of-OpenStack-Report.pdf
http://talligent.com/wp-content/uploads/2016/03/2016-State-of-OpenStack-Report.pdf
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/

Johannes Hintsch, M. Sc. 223

Relevance versus rigor in information systems research: an issue of quality. In Nissen,

H.-E., Klein, H. K., and Hirschheim, R. (eds.), Proceedings of the Working Conference

on the Information Systems Research Arena, Copenhagen, Denmark, pages 1–33. (Cited

on page 106.)

Turowski, K. (2014). Fachkomponenten. In Gronau, N., Becker, J., Kliewer, N., Lei-

meister, M., and Overhage, S. (eds.), Enzyklopädie der Wirtschaftsinformatik – Online

Lexikon. GITO Verlag, http://www.enzyklopaedie-der-wirtschaftsinformatik.de. (Cited

on page 34.)

Übernickel, F., Bravo-Sánchez, C., Zarnekow, R., and Brenner, W. (2006). IS service-

engineering: A process model for the development of IS services. In Irani, Z., Sarikas,

O. D., Llopis, J., Gonzalez, R., and Gasco, J. (eds.), Proceedings of the European and

Mediterranean Conference on Information Systems, Costa Blanca, Spain, pages 1–8.

(Cited on page 27.)

Valiente, M.-C., Garcia-Barriocanal, E., and Sicilia, M.-A. (2012). Applying an ontology

approach to IT service management for business-IT integration. Knowledge-Based

Systems, 28(1):76–87. (Cited on pages 17 and 44.)

Van den Berg, J. P. (2007). Integral warehouse management: The next generation in

transparency, collaboration and warehouse management systems. Management Outlook

Publications, Utrecht. (Cited on pages 71 and 76.)

Vanbrabant, B., Delaet, T., and Joosen, W. (2009). Federated access control and workflow

enforcement in systems configuration. In Moskowitz, A. (ed.), Proceedings of the 23rd

Large Installation System Administration Conference, Berkeley, CA, USA, pages 10–10.

(Cited on page 40.)

Velamuri, V. K., Neyer, A.-K., and Möslein, K. M. (2011). Hybrid value creation: a

systematic review of an evolving research area. Journal für Betriebswirtschaft, 61(1):3–

35. (Cited on page 154.)

Vogedes, A. (2011). Ansatz eines Kapazitätsmanagements für die Erbringung von IT-

Dienstleistungen. phdthesis, Universität St. Gallen. (Cited on pages 26, 28, 29, and 47.)

Walter, S. M., Böhmann, T., and Krcmar, H. (2007). Industrialisierung der IT - Grund-

lagen, Merkmale und Ausprägungen eines Trends. HMD – Praxis der Wirtschaftsin-

formatik, 44(4):6–16. (Cited on pages 14 and 15.)

Ward, J., Daniel, E., and Peppard, J. (2008). Building better business cases for IT

investments. MIS Quarterly Executive, 7(1):1–15. (Cited on page 85.)

Webster, J. and Watson, R. T. (2002). Analyzing the past to prepare for the future:

Writing a literature review. MIS Quarterly, 26(2):xiii–xxiii. (Cited on page 10.)

http://www.enzyklopaedie-der-wirtschaftsinformatik.de

224 An Information System Architecture for ASLPs

Weidner, S. (2012). Interactive learning - teaching IT project management using an explo-

rative role play. In Abramowicz, W., Domingue, J., and Wecel, K. (eds.), Proceedings

of the Business Information Systems: International Workshops and Future Internet

Symposium, Vilnius, Lithuania, pages 198–207. (Cited on page 118.)

Weske, M. (2012). Business process management. Springer, Heidelberg et al. (Cited on

pages ix, 22, 65, 66, 67, and 68.)

Wettinger, J., Andrikopoulos, V., Leymann, F., and Strauch, S. (2016). Middleware-

oriented deployment automation for cloud applications. IEEE Transactions on Cloud

Computing, online. (Cited on pages 4, 5, 37, 42, 45, 57, 59, 60, 62, 63, and 72.)

Wettinger, J., Behrendt, M., Binz, T., Breitenbücher, U., Breiter, G., Leymann, F., Moser,

S., Schwertle, I., and Spatzier, T. (2013). Integrating configuration management with

model-driven cloud management based on tosca. In Desprez, F., Ferguson, D., Hadar,

E., and Leymann, F. (eds.), Proceedings of the 3rd International Conference on Cloud

Computing and Service Science, Aachen, Germany, pages 437–446. (Cited on pages 40,

45, and 103.)

Wettinger, J., Breitenbcher, U., and Leymann, F. (2014). Compensation-based vs. conver-

gent deployment automation for services operated in the cloud. In Franch, X., Ghose,

A., Lewis, G., and Bhiri, S. (eds.), Proceedings of the 12th International Conference on

Service-Oriented Computing, Paris, France, pages 336–350. (Cited on pages 41 and 63.)

Wikipedia (2003). Citrix systems. URL https://en.wikipedia.org/wiki/Citrix Systems.

Last accessed: November 30, 2017. (Cited on page 111.)

Wilde, T. and Hess, T. (2007). Forschungsmethoden der Wirtschaftsinformatik. Wirt-

schaftsinformatik, 49(4):280–287. (Cited on page 106.)

Willcocks, L. and Fitzgerald, G. (1993). Market as opportunity? Case studies in out-

sourcing information technology and services. The Journal of Strategic Information

Systems, 2(3):223–242. (Cited on page 9.)

Willis, J. (2010). What DevOps means to me. URL https://blog.chef.io/2010/07/16/

what-devops-means-to-me/. Last accessed: February 10, 2018. (Cited on pages 30, 31,

32, and 44.)

Winter, R. and Fischer, R. (2007). Essential layers, artifacts, and dependencies of enter-

prise architecture. Journal of Enterprise Architecture, 3(2):1–12. (Cited on pages 33

and 66.)

Wittgreffe, J., Trollope, C., and Midwinter, T. (2006). The next generation of systems

to support corporate grade ICT products and solutions. BT Technology Journal,

24(4):93–112. (Cited on pages 26, 44, and 50.)

https://en.wikipedia.org/wiki/Citrix_Systems
https://blog.chef.io/2010/07/16/what-devops-means-to-me/
https://blog.chef.io/2010/07/16/what-devops-means-to-me/

Johannes Hintsch, M. Sc. 225

WKWI (1994). Profil der Wirtschaftsinformatik, Ausführungen der Wissenschaftlichen

Komission der Wirtschaftsinformatik. Wirtschaftsinformatik, 36(1):80–81. (Cited on

page 1.)

Wu, M.-S., Huang, S.-J., and Chen, L.-W. (2011). The preparedness of critical success

factors of IT service management and its effect on performance. The Service Industries

Journal, 31(8):1219–1235. (Cited on pages 2 and 17.)

Wuhib, F. Z., Yanggratoke, R., and Stadler, R. (2013). Allocating compute and network

resources under management objectives in large-scale clouds. Journal of Network and

Systems Management, 23(1):111–136. (Cited on page 28.)

Yang, H. and Tate, M. (2012). A descriptive literature review and classification of cloud

computing research. Communications of the Association for Information Systems,

31(1):35–60. (Cited on pages 21 and 35.)

Yazici, A., Mishra, A., and Kontogiorgis, P. (2015). IT service management (ITSM)

education and research: Global view. International Journal of Engineering Education,

31(4):1071–1080. (Cited on page 2.)

Zarnekow, R. (2007). Produktionsmanagement von IT-Dienstleistungen: Grundlagen,

Aufgaben und Prozesse. Springer, Berlin and Heidelberg. (Cited on pages 2, 15, 27, 28,

29, 45, 47, 56, 68, and 83.)

Zarnekow, R. and Brenner, W. (2003). A product-based information management ap-

proach. In Ciborra, Claudio U.and Mercurio, R., de Marco, M., Martinez, M., and

Carignani, A. (eds.), Proceedings of the 11th European Conference on Information

Systems, Naples, Italy, pages 2251–2263. (Cited on pages 15, 37, and 68.)

Zarnekow, R., Brenner, W., and Pilgram, U. (2006). Integrated information management:

Applying successful industrial concepts in IT. Springer, Berlin and Heidelberg. (Cited

on pages 2 and 15.)

Zarnekow, R., Scheeg, J., and Brenner, W. (2004). Untersuchung der Lebenszykluskosten

von IT-anwendungen. Wirtschaftsinformatik, 46. (Cited on page 129.)

Zhu, L., Xu, D., Tran, A., Xu, X., Bass, L., Weber, I., and Dwarakanathan, S. (2015).

Achieving reliable high frequency releases in cloud environments. IEEE Software,

32(2):73–80. (Cited on pages 41, 61, and 93.)

Zolnowski, A., Schmitt, A. K., and Böhmann, T. (2011). Understanding the impact of

remote service technology on service business models in manufacturing: from improving

after-sales services to building service ecosystems. In Tuunainen, V. K., Rossi, M., and

Nandhakumar, J. (eds.), Proceedings of the 19th European Conference on Information

Systems, Helsinki, Finland, pages 1–13. (Cited on page 79.)

226 An Information System Architecture for ASLPs

Johannes Hintsch, M. Sc. 227

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete

fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich nicht

die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte haben

von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die

im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter Weise

zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadensersat-

zansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafverfolgungs-

behörden begründen kann. Die Arbeit wurde bisher weder im Inland noch im Ausland

in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als Ganzes auch noch

nicht veröffentlicht.

Magdeburg, den 2. Juli 2018

. .

Johannes Hintsch, M. Sc.

228 An Information System Architecture for ASLPs

	Abstract
	Abstract in German
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Hypotheses, research goal, and research questions
	Publications of the author
	Thesis structure

	Research design
	Case study design
	Literature review design
	Summary

	Research background
	IT service provisioning
	IT service definitions and IT service provider types
	Success factors of IT outsourcing
	IT service management frameworks and recent developments
	Industrialization of IT and cloud computing

	Enterprise management systems
	Definition of enterprise systems research
	Factors of adopting enterprise management systems and information system reference models
	Enterprise management systems of IT service providers
	Service system meta-models
	Industrial methods for IT service production

	The development towards DevOps and microservices
	Software engineering process models
	System architectures

	Operation of application system landscapes
	Configuration management software
	Orchestration software

	Summary and research gap
	Summary
	Research gap

	Preliminary investigations
	Application system landscapes of IT service providers
	Requirements of the architecture
	Architecture relevance
	Complete service description
	Application service specificities
	Production manageability
	Requirements overview

	Selection of an operations automation approach

	The information system architecture for ASLPs (ISAA)
	Domain model
	Business domain
	Operations automation
	Application systems
	Mapping of domain entities to ERP master data

	Application service production
	Inquiry and order processing
	Engineering
	Deployment and billing
	Operation
	Termination

	Application system landscape
	Production execution system
	System activity: Service deployment
	System activity: Service change
	System activity: Service billing
	System activity: Service termination
	Data model

	Evaluation
	Evaluation of relevance (EVAL 1)
	Validation of consistent architecture decisions (EVAL 2)
	Exemplary application services for the evaluation (scenarios)
	Validation of applicability and adaptability of architecture (EVAL 2)
	Model-based application services
	Container-based virtualization
	Multi-tenant application services
	Summary

	Evaluation based on prototype (EVAL 3)
	Prototype
	IT system landscape
	Production execution system
	Exemplary application services
	Computer aided configuration model generation

	The production process in different variations and phases
	Full build-to-order
	Full engineer-to-order
	Different changes in operation
	Extending contract before termination

	Feasibility of automation
	Deployment times
	Comparison

	Mapping of prototype's entities to ISAA's entities

	Evaluation based on expert interviews (EVAL 3)
	Interview design
	Results

	Discussion

	Conclusion
	Summary
	Contribution
	Future work

	Domain model of the ISAA
	Supplementary material for case study
	Overview of cases
	Question catalogue

	Supplementary material for EVAL3
	Different variations and phases of the production process
	Manual deployments
	Automated deployments
	Presentation for expert interviews
	Questions for expert interviews
	Transcripts of expert interviews
	Interview 1
	Interview 2
	Interview 3

	Bibliography

